A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

In Situ Attachment of Acrylamido Sulfonic Acid-Based Monomer in Terpolymer Hydrogel Optimized by Response Surface Methodology for Individual and/or Simultaneous Removal(s) of M(III) and Cationic Dyes. | LitMetric

In Situ Attachment of Acrylamido Sulfonic Acid-Based Monomer in Terpolymer Hydrogel Optimized by Response Surface Methodology for Individual and/or Simultaneous Removal(s) of M(III) and Cationic Dyes.

ACS Omega

Advanced Polymer Laboratory, Department of Polymer Science and Technology, and Department of Leather Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India.

Published: January 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Herein, grafting of starch (STR) and in situ strategic inclusion of 2-(3-(acrylamido)propylamido)-2-methylpropane sulfonic acid (APMPS) via solution polymerization of 2-(acrylamido)-2-methylpropanesulfonic acid (AMPS) and acrylamide (AM) have resulted in the synthesis of smart STR-grafted-AMPS--APMPS--AM (i.e., STR--TerPol) interpenetrating terpolymer (TerPol) network hydrogels. For fabricating the optimum hydrogel showing excellent physicochemical properties and recyclability, amounts of ingredients and temperature of synthesis have been optimized using multistage response surface methodology. STR--TerPol bearing the maximum swelling ability, along with the retention of network integrity, has been employed for individual and/or simultaneous removal(s) of metal ions (i.e., M(III)), such as Bi(III) and Sb(III), and dyes, such as tris(4-(dimethylamino)phenyl)methylium chloride (i.e., crystal violet) and (7-amino-8-phenoxazin-3-ylidene)-diethylazanium dichlorozinc dichloride (i.e., brilliant cresyl blue). The in situ strategic protrusion of APMPS, grafting of STR into the TerPol matrix, variation of crystallinity, thermal stabilities, surface properties, mechanical properties, swellability, adsorption capacities (ACs), and ligand-selective superadsorption have been inferred via analyses of unadsorbed and/or adsorbed STR--TerPol using Fourier transform infrared (FTIR), H/C NMR, UV-vis, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray, dynamic light scattering, and rheological analyses and measuring the lower critical solution temperature, % gel content, pH at point of zero charge (pH), and network parameters, such as ρ and . The prevalence of covalent, ionic (I), and variegated interactions between STR--TerPol and M(III) has been understood through FTIR analyses, fitting of kinetics data to the pseudosecond-order model, and by the measurement of activation energies of adsorption. The formation of H-aggregate type dimers and hypochromic and hypsochromic shifts has been explained via UV-vis analyses during individual and/or simultaneous removal(s) of cationic dyes. Several isotherm models were fitted to the equilibrium experimental data, of which Langmuir and combined Langmuir-Freundlich models have been best fitted for individual Bi(III)/Sb(III) and simultaneous Sb(III) + Bi(III) removals, respectively. Thermodynamically spontaneous chemisorption processes have shown the maximum ACs of 1047.39/282.39 and 932.08/137.85 mg g for Bi(III) and Sb(III), respectively, at 303 K, adsorbent dose = 0.01 g, and initial concentration of M(III) = 1000/30 ppm. The maximum ACs have been changed to 173.09 and 136.02 mg g for Bi(III) and Sb(III), respectively, for binary Sb(III) + Bi(III) removals at 303 K, adsorbent dose = 0.01 g, and initial concentration of Bi(III)/Sb(III) at 30/5 and 5/30 ppm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648733PMC
http://dx.doi.org/10.1021/acsomega.8b02545DOI Listing

Publication Analysis

Top Keywords

individual and/or
12
and/or simultaneous
12
simultaneous removals
12
biiii sbiii
12
response surface
8
surface methodology
8
cationic dyes
8
situ strategic
8
sbiii biiii
8
biiii removals
8

Similar Publications