A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fusion of Video and Inertial Sensing for Deep Learning-Based Human Action Recognition. | LitMetric

Fusion of Video and Inertial Sensing for Deep Learning-Based Human Action Recognition.

Sensors (Basel)

Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX 75080, USA.

Published: August 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper presents the simultaneous utilization of video images and inertial signals that are captured at the same time via a video camera and a wearable inertial sensor within a fusion framework in order to achieve a more robust human action recognition compared to the situations when each sensing modality is used individually. The data captured by these sensors are turned into 3D video images and 2D inertial images that are then fed as inputs into a 3D convolutional neural network and a 2D convolutional neural network, respectively, for recognizing actions. Two types of fusion are considered-Decision-level fusion and feature-level fusion. Experiments are conducted using the publicly available dataset UTD-MHAD in which simultaneous video images and inertial signals are captured for a total of 27 actions. The results obtained indicate that both the decision-level and feature-level fusion approaches generate higher recognition accuracies compared to the approaches when each sensing modality is used individually. The highest accuracy of 95.6% is obtained for the decision-level fusion approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749419PMC
http://dx.doi.org/10.3390/s19173680DOI Listing

Publication Analysis

Top Keywords

video images
12
images inertial
12
human action
8
action recognition
8
inertial signals
8
signals captured
8
sensing modality
8
modality individually
8
convolutional neural
8
neural network
8

Similar Publications