Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Huanglongbing (HLB) is a severe, incurable citrus disease caused by the bacterium ' Liberibacter asiaticus' (CLas). Although citrus leaves serve as the site of initial infection, CLas is known to migrate to and colonize the root system; however, little is known about the impact of CLas infection on root metabolism and resident microbial communities. Scions of 'Lisbon' lemon and 'Washington Navel' orange grafted onto 'Carrizo' rootstock were grafted with either CLas-infected citrus budwood or uninfected budwood. Roots were obtained from trees 46 weeks after grafting and analyzed via H nuclear magnetic resonance spectroscopy to identify water-soluble root metabolites and high-throughput sequencing of 16S rRNA and ITS gene amplicons to determine the relative abundance of bacterial and fungal taxa in the root rhizosphere and endosphere. In both citrus varieties, 27 metabolites were identified, of which several were significantly different between CLas(+) and control plants. CLas infection also appeared to alter the microbial community structure near and inside the roots of citrus plants. Nonmetric multidimensional scaling (NMDS) and a principal coordinate analysis (PCoA) revealed distinct metabolite and microbial profiles, demonstrating that CLas impacts the root metabolome and microbiome in a manner that is variety-specific.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-03-19-0103-RDOI Listing

Publication Analysis

Top Keywords

metabolome microbiome
8
roots citrus
8
clas infection
8
citrus
6
clas
5
root
5
microbiome signatures
4
signatures roots
4
citrus huanglongbing
4
huanglongbing huanglongbing
4

Similar Publications

Gut dysbiosis and an increased risk of respiratory infection in type 2 diabetes have been well recognised. However, the relationship between the gut and respiratory pathobionts carriage rate in the Type 2 diabetic Malaysian population is understudied. To address the knowledge gap, we profiled the gut and upper respiratory tract microbial composition, as well as the urine metabolome of 31 type 2 diabetic adults and 14 non-diabetes adults.

View Article and Find Full Text PDF

This study investigates the reparative effect of electroacupuncture on myocardial fibrosis (MF) in mice and explores its impact on intestinal flora and metabolism profile. This examines an investigation into the biological mechanisms underlying electroacupuncture's efficacy in treating MF in mice. Twenty-four male Kunming mice (27-34 g) were randomized into three groups: normal control (NC,  = 8), MF model (MF,  = 8), and electroacupuncture treatment (EA,  = 8).

View Article and Find Full Text PDF

Introduction: Peatlands store up to a third of global soil carbon, and in high latitudes their litter inputs are increasing and changing in composition under climate change. Although litter significantly influences peatland carbon and nutrient dynamics by changing the overall lability of peatland organic matter, the physicochemical mechanisms of this impact-and thus its full scope-remain poorly understood.

Methods: We applied multimodal metabolomics (UPLC-HRMS, H NMR) paired with C Stable Isotope-Assisted Metabolomics (SIAM) to track litter carbon and its potential priming effects on both existing soil organic matter and carbon gas emissions.

View Article and Find Full Text PDF

Introduction: Acute stroke (AS) is a major public health issue globally, exhibiting high morbidity, disability rate, and mortality. Emerging research has demonstrated the critical roles of gut microbiota and its metabolites in pathogenesis, recovery, and prognosis of AS.

Methods: In this study, we investigated alterations in gut microbiota composition and metabolomic profiles in AS patients using 16S rRNA sequencing and untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics technology.

View Article and Find Full Text PDF

Metabolic and bariatric surgery induces metabolic benefits beyond weight loss, including improved insulin sensitivity, type 2 diabetes (T2D) remission, and reduced inflammation. Recent metabolomics research highlights amino acid metabolites-branched-chain amino acids, aromatic amino acids, and tryptophan-derived compounds-as key biomarkers for predicting surgical outcomes. Elevated preoperative levels of isoleucine, phenylalanine, levodopa, and 3-hydroxyanthranilic acid are associated with improved glycemic control and T2D remission.

View Article and Find Full Text PDF