Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We have demonstrated atomically thin, quantum capacitance-limited, field-effect transistors (FETs) that enable the detection of pH changes with 75-fold higher sensitivity (≈4.4 V per pH) over the Nernst value of 59 mV per pH at room temperature when used as a biosensor. The transistors, which are fabricated from monolayer films of MoS, use a room temperature ionic liquid (RTIL) in place of a conventional oxide gate dielectric and exhibit very low intrinsic noise resulting in a pH resolution of 92 × 10 at 10 Hz. This high device performance, which is a function of the structure of our device, is achieved by remotely connecting the gate to a pH sensing element allowing the FETs to be reused. Because pH measurements are fundamentally important in biotechnology, the increased resolution demonstrated here will benefit numerous applications ranging from pharmaceutical manufacturing to clinical diagnostics. As an example, we experimentally quantified the function of the kinase Cdk5, an enzyme implicated in Alzheimer's disease, at concentrations that are 5-fold lower than physiological values, and with sufficient time-resolution to allow the estimation of both steady-state and kinetic parameters in a single experiment. The high sensitivity, increased resolution, and fast turnaround time of the measurements will allow the development of early diagnostic tools and novel therapeutics to detect and treat neurological conditions years before currently possible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792296PMC
http://dx.doi.org/10.1039/c9nr03171eDOI Listing

Publication Analysis

Top Keywords

quantum capacitance-limited
8
room temperature
8
increased resolution
8
capacitance-limited mos
4
mos biosensors
4
biosensors enable
4
enable remote
4
remote label-free
4
label-free enzyme
4
enzyme measurements
4

Similar Publications

Standard methods for calculating transport parameters in nanoscale field-effect transistors (FETs), namely carrier concentration and mobility, require a linear connection between the gate voltage and channel conductance; however, this is often not the case. One reason often overlooked is that shifts in chemical and electric potential can partially compensate each other, commonly referred to as quantum capacitance. In nanoscale FETs, capacitance is often unmeasurable and an analytical formula is required, which assumes the conducting channel as metallic and common methods of determining threshold voltage no longer couple properly into transport equations.

View Article and Find Full Text PDF

We have demonstrated atomically thin, quantum capacitance-limited, field-effect transistors (FETs) that enable the detection of pH changes with 75-fold higher sensitivity (≈4.4 V per pH) over the Nernst value of 59 mV per pH at room temperature when used as a biosensor. The transistors, which are fabricated from monolayer films of MoS, use a room temperature ionic liquid (RTIL) in place of a conventional oxide gate dielectric and exhibit very low intrinsic noise resulting in a pH resolution of 92 × 10 at 10 Hz.

View Article and Find Full Text PDF