A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Neurocomputational theories of homeostatic control. | LitMetric

Neurocomputational theories of homeostatic control.

Phys Life Rev

Group for Neural Theory, LNC INSERM U960, DEC École Normale Supérieure PSL University, Paris, France; Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, NRU Higher School of Economics, Moscow, Russia. Electronic address:

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Homeostasis is a problem for all living agents. It entails predictively regulating internal states within the bounds compatible with survival in order to maximise fitness. This can be achieved physiologically, through complex hierarchies of autonomic regulation, but it must also be achieved via behavioural control, both reactive and proactive. Here we briefly review some of the major theories of homeostatic control and their historical cognates, addressing how they tackle the optimisation of both physiological and behavioural homeostasis. We start with optimal control approaches, setting up key concepts, exploring their strengths and limitations. We then concentrate on contemporary neurocomputational approaches to homeostatic control. We primarily focus on a branch of reinforcement learning known as homeostatic reinforcement learning (HRL). A central premise of HRL is that reward optimisation is directly coupled to homeostatic control. A central construct in this framework is the drive function which maps from homeostatic state to motivational drive, where reductions in drive are operationally defined as reward values. We explain HRL's main advantages, empirical applications, and conceptual insights. Notably, we show how simple constraints on the drive function can yield a normative account of predictive control, as well as account for phenomena such as satiety, risk aversion, and interactions between competing homeostatic needs. We illustrate how HRL agents can learn to avoid hazardous states without any need to experience them, and how HRL can be applied in clinical domains. Finally, we outline several challenges to HRL, and how survival constraints and active inference models could circumvent these problems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plrev.2019.07.005DOI Listing

Publication Analysis

Top Keywords

homeostatic control
16
theories homeostatic
8
reinforcement learning
8
drive function
8
homeostatic
7
control
7
hrl
5
neurocomputational theories
4
control homeostasis
4
homeostasis problem
4

Similar Publications