98%
921
2 minutes
20
In visual search, the presence of a salient, yet task-irrelevant, distractor in the stimulus array interferes with target selection and slows down performance. Neuroimaging data point to a key role of the frontoparietal dorsal attention network in dealing with visual distractors; however, the respective roles of different nodes within the network and their hemispheric specialization are still unresolved. Here, we used transcranial magnetic stimulation (TMS) to evaluate the causal role of two key regions of the dorsal attention network in resisting attentional capture by a salient singleton distractor: the frontal eye field (FEF) and the cortex within the intraparietal sulcus (IPS). The task of the participants (male/female human volunteers) was to discriminate the pointing direction of a target arrow while ignoring a task-irrelevant salient distractor. Immediately after stimulus onset, triple-pulse 10 Hz TMS was delivered either to IPS or FEF on either side of the brain. Results indicated that TMS over the right FEF significantly reduced the behavioral cost engendered by the salient distractor relative to left FEF stimulation. No such effect was obtained with stimulation of IPS on either side of brain. Interestingly, this FEF-dependent reduction in distractor interference interacted with the contingent trial history, being maximal when no distractor was present on the previous trial relative to when there was one. Our results provide direct causal evidence that the right FEF houses key mechanisms for distractor filtering, pointing to a pivotal role of the frontal cortex of the right hemisphere in limiting interference from an irrelevant but attention-grabbing stimulus. Visually conspicuous stimuli attract our attention automatically and interfere with performance by diverting resources away from the main task. Here, we applied transcranial magnetic stimulation over four frontoparietal cortex locations (frontal eye field and intraparietal sulcus in each hemisphere) to identify regions of the dorsal attention network that help limit interference from task-irrelevant, salient distractors. Results indicate that the right FEF participates in distractor-filtering mechanisms that are recruited when a distracting stimulus is encountered. Moreover, right FEF implements adjustments in distraction-filtering mechanisms following recent encounters with distractors. Together, these findings indicate a different hemispheric contribution of the left versus right dorsal frontal cortex to distraction filtering. This study expands our understanding of how our brains select relevant targets in the face of task-irrelevant, salient distractors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750937 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2740-18.2019 | DOI Listing |
J Neuroradiol
September 2025
Department of Physical Therapy, Yeungnam University College, 170 Hyeonchung-ro, Nam-gu, Daegu, Republic of Korea. Electronic address:
Visuospatial perception, which is based on the comprehension of objects and space, requires spatial attention to the surrounding environment. Stimulus-related elements that affect visuospatial tasks include object geometry, familiarity, complexity, and picture plane versus depth rotation. The dorsal stream pathway from the visual cortex, which is implicated in spatial processing, reflects the spatial component needed to orient the focus of attention to the location of the expected target stimulus.
View Article and Find Full Text PDFNeuroimage
September 2025
Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Advanced Magnetic Imaging Centre, Aalto University School of Science, Espoo, Finland. Electronic address:
Cognitive functions emerge from dynamic functional interplay of cortical and subcortical areas that form networks. Preterm birth poses a risk for the formation and functionality of brain networks which may lead to severe brain dysfunctions. Infants born extremely preterm have the highest risk of developing neurocognitive impairments.
View Article and Find Full Text PDFAlcohol Clin Exp Res (Hoboken)
September 2025
Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, Massachusetts, USA.
Background: Examining youth before engagement in risky behaviors may help identify neurobiological signatures that prospectively predict susceptibility to initiating and escalating alcohol and other substance use. Given that frontal and medial temporal (e.g.
View Article and Find Full Text PDFCommun Biol
September 2025
Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK.
Primate lateral intraparietal area (LIP) has been directly linked to perceptual categorization and decision-making. However, the intrinsic LIP circuitry that gives rise to the flexible generation of motor responses to sensory instruction remains unclear. Using retrograde tracers, we delineate two distinct operational compartments based on different intrinsic connectivity patterns of dorsal and ventral LIP.
View Article and Find Full Text PDFAm J Audiol
September 2025
Department of Special Education and Communication Disorders, University of Nebraska-Lincoln.
Purpose: This study investigated the effects of age-related hearing decline on functional networks using resting-state functional magnetic resonance imaging (rs-fMRI). The main objective of the present study was to examine resting-state functional connectivity (RSFC) and graph theory-based network efficiency metrics in 49 adults categorized by age and hearing thresholds to identify the neural mechanisms of age-related hearing decline.
Method: Forty-nine adults with self-reported normal hearing underwent pure-tone audiometry and rs-fMRI.