A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Spawning stock recruitment creates misleading dynamics under predation release in ecosystem and multi-species models. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ecosystem and multi-species models are used to understand ecosystem-wide effects of fishing, such as population expansion due to predation release, and further cascading effects. Many are based on fisheries models that focus on a single, depleted population, and may not always behave as expected in a multi-species context. The spawning stock recruitment (SSR) relationship, a curve linking the number of juvenile fish to the existing adult biomass, can produce dynamics that are counter-intuitive and change scenario outcomes. We analysed the Beverton-Holt SSR curve and found a population with low resilience when depleted becomes very productive under persistent predation release. To avoid implausible increases in biomass, we propose limiting recruitment to its unfished level. This allows for specification of resilience when a population is depleted, without sudden and excessive increase when the population expands. We demonstrate this dynamic and solution within an end-to-end ecosystem model, focusing on myctophids under fishing-induced predation release. We present one possible solution, but the specification of stock-recruitment models should continue to be a topic of discussion amongst multi-species and ecosystem modellers and empiricists going forward.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660827PMC
http://dx.doi.org/10.7717/peerj.7308DOI Listing

Publication Analysis

Top Keywords

predation release
16
spawning stock
8
stock recruitment
8
ecosystem multi-species
8
multi-species models
8
population
5
recruitment creates
4
creates misleading
4
misleading dynamics
4
predation
4

Similar Publications