Shear force measurement of the hydrodynamic wall position in molecular dynamics.

J Chem Phys

Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France.

Published: July 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Flows in nanofluidic systems are strongly affected by liquid-solid slip, which is quantified by the slip length and by the position where the slip boundary condition applies. Here, we show that the viscosity, slip length, and hydrodynamic wall position (HWP) can be accurately determined from a single molecular dynamics (MD) simulation of a Poiseuille flow, after identifying a relation between the HWP and the wall shear stress in that configuration. From this relation, we deduce that in gravity-driven flows, the HWP identifies with the Gibbs dividing plane of the liquid-vacuum density profile. Simulations of a generic Lennard-Jones liquid confined between parallel frozen walls show that the HWP for a pressure-driven flow is also close to the Gibbs dividing plane (measured at equilibrium), which therefore provides an inexpensive estimate of the HWP, going beyond the common practice of assuming a given position for the hydrodynamic wall. For instance, we show that the HWP depends on the wettability of the surface, an effect usually neglected in MD studies of liquid-solid slip. Overall, the method introduced in this article is simple, fast, and accurate and could be applied to a large variety of systems of interest for nanofluidic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5111966DOI Listing

Publication Analysis

Top Keywords

hydrodynamic wall
12
wall position
8
molecular dynamics
8
liquid-solid slip
8
slip length
8
gibbs dividing
8
dividing plane
8
hwp
6
slip
5
shear force
4

Similar Publications

Background: Identifying haemodynamic factors associated with thin-walled regions (TWRs) of intracranial aneurysms is critical for improving pre-surgical rupture risk assessment. Intraoperatively, these regions are visually distinguished by a red, translucent appearance and are considered highly rupture prone. However, current imaging modalities lack the resolution to detect such vulnerable areas preoperatively.

View Article and Find Full Text PDF

Accurate assessment of intracranial aneurysm rupture risk, particularly in Middle Cerebral Artery (MCA) aneurysms, relies on a detailed understanding of patient-specific hemodynamic behavior. In this study, we present an integrated framework that combines Computational Fluid Dynamics (CFD) with Proper Orthogonal Decomposition (POD) and machine learning (ML) to efficiently model pulsatile blood flow using a Casson non-Newtonian fluid model, without incorporating fluid-structure interaction (FSI). Patient-specific vascular geometries were reconstructed from DICOM imaging data and simulated using ANSYS Fluent to capture key hemodynamic factors, including velocity components, pressure, wall shear stress (WSS), and oscillatory shear index (OSI).

View Article and Find Full Text PDF

Riblets inspired by natural shark skin denticles are widely recognized for their drag-reducing performance. Although previous research has predominantly focused on two-dimensional riblet geometries, three-dimensional topographies remain underexplored due to the complex architecture of denticle-inspired surfaces. Natural riblet arrays, comprising thousands of interconnected denticles, pose challenges in terms of parameterization, simulation, and fabrication.

View Article and Find Full Text PDF

Background: Intracranial aneurysms, particularly saccular types, are localized dilations of cerebral vessels prone to rupture, leading to life-threatening complications such as subarachnoid hemorrhage.

Purpose: This study aimed to characterize the localized hemodynamic environment within the aneurysm dome and evaluate how spatial interactions among key flow parameters contribute to rupture risk, using a synergistic analytical framework.

Methods: We applied the targeted evaluation of synergistic links in aneurysms (TESLA) framework to analyze 18 intracranial aneurysms from 15 patients.

View Article and Find Full Text PDF

Haemodynamic numerical simulation of hybrid surgical repairs for thoracoabdominal aortic aneurysms.

Comput Methods Programs Biomed

November 2025

Radiology, Spedali Civili Hospital, P.le Spedali Civili 1, Brescia, 25123, Italy; Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Viale Europa 11, Brescia, 25123, Italy.

Background And Objective: The hybrid surgical repair is a feasible alternative to conventional open surgical or total endovascular repairs for thoracoabdominal aneurysms. However, a small number of patients are treated every year with this procedure, and for this reason, a negligible amount of numerical or measured data is available in the literature. Moreover, the complex and highly variable stent graft design in hybrid surgical repairs means that a priori prediction of haemodynamic flow parameters and clinical or surgical outcomes remain challenging.

View Article and Find Full Text PDF