A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Cortical bone vessel identification and quantification on contrast-enhanced MR images. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Cortical bone porosity is a major determinant of bone strength. Despite the biomechanical importance of cortical bone porosity, the biological drivers of cortical porosity are unknown. The content of cortical pore space can indicate pore expansion mechanisms; both of the primary components of pore space, vessels and adipocytes, have been implicated in pore expansion. Dynamic contrast-enhanced MRI (DCE-MRI) is widely used in vessel detection in cardiovascular studies, but has not been applied to visualize vessels within cortical bone. In this study, we have developed a multimodal DCE-MRI and high resolution peripheral QCT (HR-pQCT) acquisition and image processing pipeline to detect vessel-filled cortical bone pores.

Methods: For this human study, 19 volunteers (10 males and 9 females; mean age =63±5) were recruited. Both distal and ultra-distal regions of the non-dominant tibia were imaged by HR-pQCT (82 µm nominal resolution) for bone structure segmentation and by 3T DCE-MRI (Gadavist; 9 min scan time; temporal resolution =30 sec; voxel size 230×230×500 µm) for vessel visualization. The DCE-MRI was registered to the HR-pQCT volume and the voxels within the MRI cortical bone region were extracted. Features of the DCE data were calculated and voxels were categorized by a 2-stage hierarchical kmeans clustering algorithm to determine which voxels represent vessels. Vessel volume fraction (volume ratio of vessels to cortical bone), vessel density (average vessel count per cortical bone volume), and average vessel volume (mean volume of vessels) were calculated to quantify the status of vessel-filled pores in cortical bone. To examine spatial resolution and perform validation, a virtual phantom with 5 channel sizes and an applied pseudo enhancement curve was processed through the proposed image processing pipeline. Overlap volume ratio and Dice coefficient was calculated to measure the similarity between the detected vessel map and ground truth.

Results: In the human study, mean vessel volume fraction was 2.2%±1.0%, mean vessel density was 0.68±0.27 vessel/mm, and mean average vessel volume was 0.032±0.012 mm/vessel. Signal intensity for detected vessel voxels increased during the scan, while signal for non-vessel voxels within pores did not enhance. In the validation phantom, channels with diameter 250 µm or greater were detected successfully, with volume ratio equal to 1 and Dice coefficient above 0.6. Both statistics decreased dramatically for channel sizes less than 250 µm.

Conclusions: We have a developed a multi-modal image acquisition and processing pipeline that successfully detects vessels within cortical bone pores. The performance of this technique degrades for vessel diameters below the in-plane spatial resolution of the DCE-MRI acquisition. This approach can be applied to investigate the biological systems associated with cortical pore expansion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629562PMC
http://dx.doi.org/10.21037/qims.2019.05.23DOI Listing

Publication Analysis

Top Keywords

cortical bone
40
vessel volume
16
cortical
13
vessel
13
pore expansion
12
vessels cortical
12
processing pipeline
12
volume ratio
12
average vessel
12
bone
11

Similar Publications