Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Purpose: This study aimed to incorporate ondansetron hydrochloride (ODS), a water-soluble drug into nanostructured lipid carriers (NLCs) to improve the pharmacokinetic properties of the drug.
Methods: NLCs were produced by solvent injection method. Various parameters of formulation and process were assessed to enhance the drug incorporation into NLCs. Physicochemical analyses, in vitro drug release, and pharmacokinetic studies were performed.
Results: Entrapment efficiency (EE) of ODS was considerably improved (>90%) by increasing pH of the aqueous phase. The use of an appropriate level of liquid lipid resulted in small, monodispersed NLCs with the enhanced EE and drug loading (DL). The optimized NLCs formulation exhibited particle size of 185.2 ± 1.9 nm, polydispersity index of 0.214 ± 0.006, EE of 93.2 ± 0.5%, and DL of 10.43 ± 0.05% as well as an in vitro sustained-release profile of ODS. Differential scanning calorimetry and X-ray powder diffraction suggested the amorphous state of ODS in the NLCs. The pharmacokinetic study in rats exhibited the sustained-release characteristic of the optimized ODS-loaded NLCs following subcutaneous administration with an extended T and mean residence time as well as the enhanced systemic exposure compared to the ODS solution.
Conclusions: The ODS-loaded NLCs appear potential for prolongation of drug action and reduction in dosing frequency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-019-2672-x | DOI Listing |