Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The fish plasma model (FPM) predicts the fish blood plasma concentration of a pharmaceutical from the water concentration to which the fish is exposed and compares it with the human therapeutic plasma concentration (H PC) with the postulate that no adverse toxic effects occur below the H PC. The present study provides several lines of evidence supporting the FPM for the beta-adrenergic agonist salbutamol, a small cationic molecule at ambient pH. Salbutamol exhibited very low acute toxicity to early and adult life stages of fish. Biomass reduction in fish early life stages was the most sensitive apical endpoint, with no-observed-effect concentrations (NOECs) in the low mg/L range after continuous exposure for up to 120 d. Given that predicted and measured environmental concentrations are at least 1000-fold lower, the risk of salbutamol in freshwater is deemed very low. Increase in heart beat rate and decrease in total triglyceride content in fish also occurred at the low mg/L range and resembled effects known from humans. This finding supports the FPM assumption of conserved targets in fish with similar functionality. Plasma concentrations measured in adult and juvenile fish exposed to water concentrations at approximately the NOECs exceeded H PC and even approached plasma concentrations toxic to humans. This result confirms for salbutamol the FPM hypothesis that no adverse (i.e., population-relevant) toxic effects occur in fish below the H PC. Environ Toxicol Chem 2019;38:2509-2519. © 2019 SETAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/etc.4543 | DOI Listing |