98%
921
2 minutes
20
Microbial community metabolomics, particularly in the human gut, are beginning to provide a new route to identify functions and ecology disrupted in disease. However, these data can be costly and difficult to obtain at scale, while amplicon or shotgun metagenomic sequencing data are readily available for populations of many thousands. Here, we describe a computational approach to predict potentially unobserved metabolites in new microbial communities, given a model trained on paired metabolomes and metagenomes from the environment of interest. Focusing on two independent human gut microbiome datasets, we demonstrate that our framework successfully recovers community metabolic trends for more than 50% of associated metabolites. Similar accuracy is maintained using amplicon profiles of coral-associated, murine gut, and human vaginal microbiomes. We also provide an expected performance score to guide application of the model in new samples. Our results thus demonstrate that this 'predictive metabolomic' approach can aid in experimental design and provide useful insights into the thousands of community profiles for which only metagenomes are currently available.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637180 | PMC |
http://dx.doi.org/10.1038/s41467-019-10927-1 | DOI Listing |
Nanoscale
September 2025
Institute of Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore.
The rapid increase in multidrug-resistant (MDR) bacteria and biofilm-associated infections has intensified the global need for innovative antimicrobial strategies. Phage therapy offers promising precision against MDR pathogens by utilizing the natural ability of phages to specifically infect and lyse bacteria. However, their clinical application is hampered by challenges such as narrow host range, immune clearance and limited efficacy within biofilms.
View Article and Find Full Text PDFBrain Behav
September 2025
Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
Introduction: Anxiety and stress are prevalent mental health issues. Traditional drug treatments often come with unwanted side effects and may not produce the desired results. As an alternative, probiotics are being used as a treatment option due to their lack of specific side effects.
View Article and Find Full Text PDFChembiochem
September 2025
Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.
Soils harbor some of the most diverse microbiomes on Earth. Interactions within these microbial communities are often mediated by natural products, many functioning as chemical signals. Specialized metabolites known as arginoketides, or arginine-derived polyketides, have been linked to mediate these interactions.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
D-BAUG, ETH Zurich, Zürich 8093, Switzerland.
Biofilms-microbial communities encased in a self-produced extracellular matrix-pose a significant challenge in clinical settings due to their association with chronic infections and antibiotic resistance. Their formation in the human body is governed by a complex interplay of biological and environmental factors, including the biochemical composition of bodily fluids, fluid dynamics, and cell-cell and cell-surface interactions. Improving therapeutic strategies requires a deeper understanding of how host-specific conditions shape biofilm development.
View Article and Find Full Text PDFMicrob Biotechnol
September 2025
Departamento de Biología Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
The seed microbiota, a still underexplored component of plant-microbe interactions, plays a pivotal role in plant development and holds significant promise for advancing sustainable agriculture. By influencing essential processes such as germination, stress tolerance, nutrient acquisition and defence, seed-associated microbes offer unique advantages beyond those of soil- or rhizosphere-associated microbiomes. Notably, they are transmitted both vertically and horizontally; however, fundamental questions remain regarding their origin, ecological dynamics and functional roles across environments.
View Article and Find Full Text PDF