98%
921
2 minutes
20
Using a combined approach based on MS, enzyme digestion and advanced MD studies we have determined the sequential order of formation of the three disulfide bridges of the Cripto-1 CFC domain. The domain has a rare pattern of bridges and is involved in the recognition of several receptors. The bridge formation order is C1-C4, C3-C5, C2-C6, however formation of C1-C4 plays no roles for the formation of the others. Folding is driven by formation of the C3-C5 bridge and is supported by residues lying within the segment delimited by these cysteines. We indeed observe that variants CFC-W123A and CFC-ΔC1/C4, where C1 and C4 are replaced by serines, are able to refold in the same time window as the wild type, while CFC-K132A and CFC-W134A are not. A variant where cysteines of the second and third bridge are mutated to serine, convert slowly to the monocyclic molecule. Data altogether support a mechanism whereby the Cripto-1 CFC domain refolds by virtue of long-range intramolecular interactions that involve residues close to cysteines of the second and third bridge. These findings are supported by the in silico study that shows how distant parts of the molecules come into contact on a long time scale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.07.040 | DOI Listing |
Sci Rep
May 2025
Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
Glioblastoma multiforme (GBM) is one of the most malignant tumors in central nervous system (CNS) tumors. The glucose-regulated protein 78 (GRP78) and CRIPTO (Cripto-1), a protein that belongs to the EGF-CFC (epidermal growth factor cripto-1 FRL-1 cryptic) family, are overexpressed in GBM. A complex between GRP78 SBDβ (substrate binding domain beta) and CRIPTO CFC domain was reported in previous studies.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
The TGF-β family ligand Nodal is an essential regulator of embryonic development, orchestrating key processes such as germ layer specification and body axis formation through activation of SMAD2/3-mediated signaling. Significantly, this activation requires the co-receptor Cripto-1. However, despite their essential roles in embryogenesis, the molecular mechanism through which Cripto-1 enables Nodal to activate the SMAD2/3 pathway has remained elusive.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2024
Institute of Biostructures and Bioimaging, CNR, Via P. Castellino, 111, 80131, Napoli, Italy. Electronic address:
In the era of immunotherapy, the targeting of disease-specific biomarkers goes hand in hand with the development of highly selective antibody-based reagents having optimal pharmacological/toxicological profiles. One interesting and debated biomaker for several types of cancers is the onco-fetal protein Cripto-1 that is selectively expressed in many solid tumours and has been actively investigated as potential theranostic target. Starting from previously described anti-CFC/Cripto-1 murine monoclonal antibodies, we have moved forward to prepare the humanized recombinant Fabs which have been engineered so as to bear an MTGase site useful for a one-step site-specific labelling.
View Article and Find Full Text PDFJ Cell Biochem
July 2022
Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan.
Int J Mol Sci
February 2021
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.
Cripto-1 is a member of the EGF-CFC/FRL1/Cryptic family and is involved in embryonic development and carcinogenesis. We designed a novel anti-Cripto-1 artificial antibody and assessed the recognition to the antigen and the potential to suppress the growth of cancer stem cells. First, single chain antibody clones were isolated by bio-panning with the affinity to recombinant Cripto-1 protein from our original phage-display library.
View Article and Find Full Text PDF