Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: This study characterizes motor function responses after early dosing of AVXS-101 (onasemnogene abeparvovec) in gene replacement therapy in infants with severe spinal muscular atrophy type 1 (SMA1).

Methods: This study is a follow-up analysis of 12 infants with SMA1 who received the proposed therapeutic dose of AVXS-101 in a Phase 1 open-label study (NCT02122952). Infants were grouped according to age at dosing and baseline Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders scores: (1) early dosing/low motor, dosed age less than three months with scores <20 (n = 3), (2) late dosing, dosed at age three months or greater (n = 6), and (3) early dosing/high motor, dosed age less than three months with scores ≥20 (n = 3).

Results: Early dosing/low motor group demonstrated a mean gain of 35.0 points from a mean baseline of 15.7, whereas the late dosing group had a mean gain of 23.3 from a mean baseline of 26.5. The early dosing/high motor group quickly reached a mean score of 60.3, near the scale maximum (64), from a mean baseline of 44.0. Despite a lower baseline motor score, the early dosing/low motor group achieved sitting unassisted earlier than the late dosing group (mean age: 17.0 vs 22.0 months). The early dosing/high motor group reached this milestone earliest (mean age: 9.4 months).

Conclusions: The rapid, significant motor improvements among infants with severe SMA1 treated with AVXS-101 at an early age highlight the importance of newborn screening and early treatment and demonstrate the therapeutic potential of AVXS-101 regardless of baseline motor function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pediatrneurol.2019.05.005DOI Listing

Publication Analysis

Top Keywords

motor function
8
gene replacement
8
replacement therapy
8
impact age
4
age motor
4
function phase
4
phase 1/2a
4
study
4
1/2a study
4
infants
4

Similar Publications

Vanadium (V) is a trace element in the environment; it is detected in soil, water, air, dust, and food products. V-containing compounds have shown therapeutic potential in the treatment of diabetes. However, studies on the effects of V on animal behavior remain limited and sporadic.

View Article and Find Full Text PDF

Subthalamic deep brain stimulation (STN-DBS) provides unprecedented spatiotemporal precision for the treatment of Parkinson's disease (PD), allowing for direct real-time state-specific adjustments. Inspired by findings from optogenetic stimulation in mice, we hypothesized that STN-DBS can mimic dopaminergic reinforcement of ongoing movement kinematics during stimulation. To investigate this hypothesis, we delivered DBS bursts during particularly fast and slow movements in 24 patients with PD.

View Article and Find Full Text PDF

Rapid moving by liquid-amplified electrostatic rolling.

Sci Adv

September 2025

The Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China.

Mobile robots that simultaneously have fast speeds, sufficient load-carrying capabilities, and multiple locomotive functions have always been challenging to develop. Here, we introduce a liquid-amplified electrostatic rolling (LAER) mechanism, which elegantly integrates actuation and adhesion into a streamline single-degree-of-freedom structure. Based on this, we developed a rigid tethered LAER roller (0.

View Article and Find Full Text PDF

Distinct cerebellar networks underpin clinical improvement in adolescent Tourette disorder.

Brain

September 2025

Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 75013 Paris, France.

Adolescence is frequently called the second brain maturation period. In Tourette disorder (TD), the clinical trajectory of tics and associated psychiatric co-morbidities vary significantly across individuals during the transition from adolescents to adulthood. In this study, we aimed to identify patterns of resting-state functional connectivity that differentiate adolescents with TD from their neurotypical peers, and to monitor symptom-specific functional changes over time.

View Article and Find Full Text PDF

Spinal cord injury (SCI) results in an array of debilitating, sometimes permanent-and at times life-threatening-motor, sensory, and autonomic deficits. A broad range of therapies have been tested pre-clinically, and there has been a significant acceleration in recent years of clinical translation of potential treatments. However, it is widely appreciated among scientists and clinical professionals alike that there likely is no "silver bullet" (single treatment) that will result in complete functional restoration after SCI.

View Article and Find Full Text PDF