Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The collapse of a laser beam propagating inside a hollow-core fiber is investigated by numerically solving different nonlinear propagation models. We have identified that the fiber confinement favors the spatial collapse, especially in case of pulses with the input peak power close to the critical value. We have also observed that when using pulses in the femtosecond range, the temporal dynamics plays an important role, activating the spatial collapse even for pulses with input peak powers below the critical value. The complex self-focusing dynamics observed in the region below the critical power depends on the temporal evolution of the pulse and, also, on the interaction between the different spatial modes of the hollow-core fiber.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6606594 | PMC |
http://dx.doi.org/10.1038/s41598-019-45940-3 | DOI Listing |