98%
921
2 minutes
20
Aim: B-cell lymphoma-2-associated transcription factor 1 (BCLAF1) is involved in various biological processes including tumorigenesis, but its function and expression in hepatocellular carcinoma (HCC) is little known, and its clinical value in HCC has not yet been defined.
Methods: The protein level of BCLAF1 in HCC specimens and paired adjacent normal tissues was examined by immunohistochemical staining. The effects of BCLAF1 on autophagy in HCC cells were detected by confocal microscopy, transmission electron microscopy, and western blot analysis. Cell proliferation and tumorigenicity assays were carried out in vitro and in vivo. Flow cytometry assay was used to determine the apoptosis level of HCC cells. The correlation of BCLAF1 and sorafenib resistance in HCC was analyzed by the Kaplan-Meier survival method.
Results: High expression of BCLAF1 was found in HCC tissues compared with adjacent normal tissues, and higher BCLAF1 expression was correlated with higher tumor-node-metastasis stage, worse differentiation, and worse prognosis of HCC patients. BCLAF1 could induce autophagy in HCC cells in response to starvation and BCLAF1-mediated autophagy could enhance cell proliferation and impede cell apoptosis under stress conditions. Animal experiments indicated that BCLAF1 promoted tumorigenicity of HCC cells in vivo. More importantly, high expression of BCLAF1 might contribute to sorafenib resistance in HCC patients.
Conclusions: BCLAF1 is a potential oncogene in HCC by inducing autophagy to maintain tumor cell growth in response to stress conditions, and it could serve as a potential biomarker for predicting the prognosis of HCC patients and screening patients who are suitable for sorafenib therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/hepr.13395 | DOI Listing |
Ann Surg Oncol
September 2025
Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Background: Hepatocellular carcinoma (HCC) frequently invades the portal vein, leading to early recurrence and a poor prognosis. However, the mechanisms underlying this invasion remain unclear. In this study, we aimed to detect portal vein circulating tumor cells (CTCs) using a Glypican-3-positive detection method and evaluate their prognostic significance.
View Article and Find Full Text PDFJ Proteome Res
September 2025
State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China.
Hepatocellular carcinoma (HCC) constitutes approximately 90% of liver cancers, yet its early detection remains challenging due to the low sensitivity of current diagnostic methods and the difficulty in identifying minimal cancer cells within the body. This study employed a patient-derived xenograft (PDX) mouse model to screen for biomarkers, leveraging its advantage of low background interference compared to human serum exosome studies. Using a novel microextraction technique, exosomes were isolated from just one microliter of serum from HCC PDX mice, followed by proteomic profiling.
View Article and Find Full Text PDFBioimpacts
August 2025
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
Introduction: Hepatocellular carcinoma (HCC) remains a major cause of cancer mortality, and effective therapeutic options are limited. MicroRNA‑372‑3p (miR‑372‑3p) has been implicated in HCC, yet its exact role is unclear.
Methods: We established miR‑372‑3p‑overexpressing HCC cell lines (HepG2, SNU‑449, JHH‑4) via lentiviral transduction.
J Cancer Res Clin Oncol
September 2025
Drug Inspection Laboratory, Jingzhou Institute for Food and Drug Control, Jingzhou, 434000, China.
Objective: Dipeptidyl peptidase 9 (DPP9) not only regulates tumor progression and drug sensitivity, but also modifies oxidative stress mediated ferroptosis. This study aimed to investigate the effect of DPP9 inhibition on sorafenib sensitivity and its interaction with ferroptosis in hepatocellular carcinoma (HCC).
Methods: Two HCC cell lines (Huh7 and MHCC-97H) were transfected with DPP9 siRNA, followed by detection of reactive oxygen species (ROS), ferrous iron (Fe), malondialdehyde (MDA), and ferroptosis-related proteins, and treated by 0-16 μM sorafenib to calculate half-maximal inhibitory concentration (IC) for sensitivity assessment.
Mol Pharm
September 2025
Division of Pharmaceutics and Pharmacology, College of Pharmacy; Center for RNA Nanotechnology and Nanomedicine; James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States.
Liver cancer, particularly hepatocellular carcinoma (HCC), poses significant treatment challenges due to chemoresistance and cancer recurrence. Similar to customs at the border, the liver detoxifies incoming chemicals via efflux pumps and overexpresses ATP-binding cassette (ABC) drug exporters, leading to chemoresistance. ABC contains a multihomosubunit structure and a revolving transport mechanism, actively effluxing drugs from cancer cells, thereby reducing intracellular drug accumulation and therapeutic efficacy.
View Article and Find Full Text PDF