Public exposure to radiofrequency electromagnetic fields in everyday microenvironments: An updated systematic review for Europe.

Environ Res

Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, CH-4002, Basel, Switzerland; University of Basel, Basel, Switzerland.

Published: September 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Communication technologies are rapidly changing and this may affect public exposure to radiofrequency electromagnetic fields (RF-EMF). This systematic review of literature aims to update a previous review on public everyday RF-EMF exposure in Europe, which covered publications until 2015. From 144 eligible records identified by means of a systematic search in PubMed, Embase and Web of Knowledge databases, published between May 2015 and 1 July 2018, 26 records met the inclusion criteria. We extracted quantitative data on public exposure in different indoors, outdoors and transport environments. The data was descriptively analyzed with respect to the exposure patterns between different types of environments. Mean RF-EMF exposure in homes, schools and offices were between 0.04 and 0.76 V/m. Mean outdoor exposure values ranged from 0.07 to 1.27 V/m with downlink signals from mobile phone base stations being the most relevant contributor. RF-EMF levels tended to increase with increasing urbanity. Levels in public transport (bus, train and tram) and cars were between 0.14 and 0.69 V/m. The highest levels, up to 1.97 V/m, were measured in public transport stations with downlink as the most relevant contributor. In line with previous studies, RF-EMF exposure levels were highest in the transportation systems followed by outdoor and private indoor environments. This review does not indicate a noticeable increase in everyday RF-EMF exposure since 2012 despite increasing use of wireless communication devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2019.05.048DOI Listing

Publication Analysis

Top Keywords

rf-emf exposure
16
public exposure
12
exposure radiofrequency
8
radiofrequency electromagnetic
8
electromagnetic fields
8
systematic review
8
exposure
8
everyday rf-emf
8
relevant contributor
8
public transport
8

Similar Publications

In order to understand Idiopathic Environmental Intolerance attributed to Electromagnetic Fields (IEI-EMF), it has been argued that it is crucial to test for effects of radiofrequency electromagnetic fields (RF-EMF) on biomarkers, given that they can be more objective than symptom reports. While no clear evidence links RF-EMF exposure to biomarker changes, research remains limited and largely speculative due to the lack of known bioeffect mechanisms. However, there is in vitro evidence that cortisol is affected by heating, which, as RF-EMF causes heating, raises the possibility that RF-EMF exposure may increase cortisol via thermally mediated processes.

View Article and Find Full Text PDF

Health risks related to 900 MHz 2 G frequency exposure remain inconclusive under current regulatory standards. Research into potential long-term effects is ongoing, particularly as the use of mobile networks and wireless devices increases. This study investigates the effects of non-thermal exposure levels of mobile phone 900 MHz radiofrequency electromagnetic field (RF-EMF) on rodent neurodevelopment.

View Article and Find Full Text PDF

The rapid deployment of fifth-generation (5G) wireless networks has raised societal concerns regarding potential biological effects, particularly on human skin, due to the use of higher carrier frequencies that penetrate tissue less deeply. Consequently, whether 5G-modulated radiofrequency (RF) electromagnetic fields (EMFs) at 3.5 GHz affect oxidative stress and DNA repair in skin cells remains an open question.

View Article and Find Full Text PDF

This study evaluates radiofrequency electromagnetic field (RF-EMF) exposure in 5G networks using a dual approach that combines theoretical extrapolations and direct measurements in diverse semiurban and urban environments, specifically on the campus of the Polytechnic University of Valencia. Measurements were conducted using personal exposimeters under active traffic conditions on the 5G network, complemented by a code-selective measurement system based on an R&S TSME6 scanner. This approach enabled the calculation of maximum theoretical exposure by detailed analysis of 5G signals and the capture of key parameters such as cell ID and beam indices at 16 representative points across the campus.

View Article and Find Full Text PDF

This study assesses the exposure to 5G radio frequency electromagnetic fields (RF EMF) across four European countries. Spot measurements were conducted indoor and outdoor in both public spaces and educational institutions, encompassing urban and rural environments. In total, 146 measurements were performed in 2023, divided over Belgium (47), Switzerland (38), Hungary (30) and Poland (31).

View Article and Find Full Text PDF