A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Anaerobic-aerobic sequential treatment: Temperature optimization and cost implications. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Traditionally, aeration units, used as a polishing stage after anaerobic digestion (AD) of wastes, are operated at ambient temperature. Yet, when effluent quality is the main design criterion, raising the temperature of the aeration stage can be justified by improved removal efficiencies. In this study, an anaerobic-aerobic sequential system (AASS) was operated to co-digest raw wastewater and food waste. The aerobic compartment was tested under psychrophilic and mesophilic temperatures. At the design loading rate of 2 g L d, the anaerobic digester achieved removal efficiencies of 85 ± 2% of volatile solids (VS), 84 ± 3% of total chemical oxygen demand (COD) and a biogas yield of 1,035 ± 30 mL g (50% methane). The aerobic reactor achieved additional removal of 8% COD and 7 % VS. By raising the temperature of the aerobic reactor to the mesophilic range, COD and solids concentrations of the effluent dropped to approximately half their values. This was accompanied by an increase in nitrification (from 68% to 91%) and denitrification (from 10% to 16%). The energy analysis showed that total energy consumption slightly increases (from 0.45 to 0.49 kWh kg) by raising the temperature of the aerobic reactor to mesophilic range. A preliminary evaluation of the sludge disposal cost, revealed a saving increase of 5-6% under mesophilic operation with respect to psychrophilic conditions. : In order to cope with the globally increasing constraints on the disposal of urban wastes, efficient post-processing of effluents becomes a crucial requirement for the anaerobic digestion industry. In this context, the submitted manuscript shows that the quality of the effluent, of an anaerobic digester, treating food waste with raw wastewater, can be substantially improved by optimizing the aerobic polishing stage. Raising the temperature of the aerobic reactor to the mesophilic range resulted in a drop of solids and COD concentrations to approximately half their values. Equally important, the implications on operational costs were found to be favorable, compared to traditional psychrophilic aerobic post-treatment, when taking into consideration indirect sludge treatment costs and energy selling revenues.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10962247.2019.1629361DOI Listing

Publication Analysis

Top Keywords

raising temperature
16
aerobic reactor
16
temperature aerobic
12
reactor mesophilic
12
mesophilic range
12
anaerobic-aerobic sequential
8
polishing stage
8
anaerobic digestion
8
removal efficiencies
8
raw wastewater
8

Similar Publications