Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Treatment persistence is an important consideration when selecting a therapy for chronic conditions such as rheumatoid arthritis (RA). We assessed the long-term persistence of abatacept or a tumor necrosis factor inhibitor (TNFi) following (1) inadequate response to a conventional synthetic disease-modifying antirheumatic drug (first-line biologic agent) and (2) inadequate response to a first biologic DMARD (second-line biologic agent).

Methods: Data were extracted from the Rhumadata® registry for patients with RA prescribed either abatacept or a TNFi (adalimumab, certolizumab, etanercept, golimumab, or infliximab) who met the study selection criteria. The primary outcome was persistence to abatacept and TNFi treatment, as first- or second-line biologics. Secondary outcomes included the proportion of patients discontinuing therapy, reasons for discontinuation, and predictors of discontinuation. Persistence was defined as the time from initiation to discontinuation of biologic therapy. Baseline characteristics were compared using descriptive statistics; cumulative persistence rates were estimated using Kaplan-Meier methods, compared using the log-rank test. Multivariate Cox proportional hazard models were used to compare the persistence between treatments, controlling for baseline covariates.

Results: Overall, 705 patients met the selection criteria for first-line biologic agent initiation (abatacept, n = 92; TNFi, n = 613) and 317 patients met the criteria for second-line biologic agent initiation (abatacept, n = 105; TNFi, n = 212). There were no clinically significant differences in baseline characteristics between the treatments with either first- or second-line biologics. Persistence was similar between the first-line biologic treatments (p = 0.7406) but significantly higher for abatacept compared with TNFi as a second-line biologic (p = 0.0001). Mean (SD) times on first-line biologic abatacept and TNFi use were 4.53 (0.41) and 5.35 (0.20) years, and 4.80 (0.45) and 2.82 (0.24) years, respectively, as second-line biologic agents. The proportion of patients discontinuing abatacept and TNFi in first-line was 51.1% vs. 59.5% (p = 0.1404), respectively. In second-line, it was 57.1% vs. 74.1% (p = 0.0031). The main reasons for stopping both treatments were inefficacy and adverse events.

Conclusions: Abatacept and TNFi use demonstrated similar persistence rates at 9 years as a first-line biologic agent. As a second-line biologic agent, abatacept had better persistence rates over a TNFi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555030PMC
http://dx.doi.org/10.1186/s13075-019-1917-8DOI Listing

Publication Analysis

Top Keywords

first-line biologic
20
biologic agent
20
second-line biologic
20
abatacept tnfi
20
persistence rates
16
biologic
13
abatacept
11
persistence
10
tnfi
10
rheumatoid arthritis
8

Similar Publications

Betrixaban is a broad anti-virus inhibitor by activating innate immunity.

Front Cell Infect Microbiol

September 2025

Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China.

The innate immune system serves as the first line of defense against viral infections. Type I interferon (IFN-I) signaling, in particular, plays a crucial role in mediating antiviral immunity. Here, we identify Betrixaban (BT), a novel small-molecule compound that activates innate immune responses, leading to broad-spectrum antiviral effects.

View Article and Find Full Text PDF

Background: Sézary syndrome (SS) is an aggressive and leukemic variant of Cutaneous T-cell Lymphoma (CTCL) with an incidence of 1 case per million people per year. It is characterized by a complex and heterogeneous profile of genetic alteration ns that has so far precluded the development of a specific and definitive therapeutic intervention.

Methods: Deep-RNA-sequencing (RNA-seq) data were used to analyze the single nucleotide variants (SNVs) carried by 128 putative CTCL-driver genes, previously identified as mutated in genomic studies, in longitudinal SS samples collected from 17 patients subjected to extracorporeal photopheresis (ECP) with Interferon-α.

View Article and Find Full Text PDF

Background: Neoantigen-based vaccines show promising therapeutic potential in solid tumors such as melanoma, GBM, NSCLC, and CRC. However, clinical responses remain suboptimal in stage IV patients, due to ineffective T-cell function and high tumor burdens. To overcome these limitations, our study investigates a combination strategy using neoantigen peptide vaccines and precision critical lesion radiotherapy (CLERT), which delivers immunomodulatory doses to key tumor regions synergistically enhance immune activation and inhibit progression in multifocal stage IV patients.

View Article and Find Full Text PDF

Adoptive Cellular Therapies in Pediatric Leukemia Patients After Allogeneic-Hematopoietic Stem Cell Transplants.

Immune Netw

August 2025

Riddell Centre for Cancer Immunotherapy, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary T2N 1N4, Canada.

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) provides a curative potential for high-risk patients with leukemia following first-line therapies, driven by potent immune cell-dependent anti-tumour activities. Although deep remission can be achieved, many patients relapse after allo-HSCT, and further treatment options are scarce. Given the potent immune cell-mediated anti-leukemic effects of allo-HSCT, adoptive cellular therapies (ACTs) have been explored as an adjunctive therapy to enhance the efficacy of allo-HSCT or to treat patients who relapse after allo-HSCT.

View Article and Find Full Text PDF

Anti-epidermal growth factor receptor (EGFR) therapies are the most recommended first-line treatment for wild-type unresectable metastatic colorectal cancer (CRC) according to the European Society for Medical Oncology guidelines. However, primary resistance renders this treatment ineffective for almost 40% of patients. Our previous work identified Aurora kinase A (AURKA) as a key resistance driver through non-canonical, Hippo-independent Yes-associated protein 1 (YAP1) activation.

View Article and Find Full Text PDF