Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
To assess two models for the prediction of health utilization and functions using standardized in-person assessments of frailty and administrative claims-based geriatric risk measures among Medicare fee-for-service beneficiaries aged 65 years and above. Outcomes of hospitalizations, death, and functional help were investigated for participants in the 2011 National Health and Aging Trends Study. For each outcome, multivariable logistic regression model was used to investigate claims-based geriatric risk and survey-based frailty. Both claims-based and survey-based models showed moderate discrimination. The c-statistic of the standardized frailty models ranged from 0.67 (for any hospitalization) to 0.84 (for any IADL [instrumental activities of daily living] help). Models using administrative data ranged from 0.71 (for any hospitalization) to 0.81 (for any IADL help). Models based on existing administrative data appear to be as discriminate as survey-based models. Health care providers and insurance plans can effectively apply existing data resources to help identify high-risk individuals for potential care management interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885102 | PMC |
http://dx.doi.org/10.1177/0898264319851995 | DOI Listing |