Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Hamiltonian function of a network, derived from the intrinsic distributions of nodes and edges, magnified by resolution parameter has information on the distribution of energy in the network. In brain networks, the Hamiltonian function follows hierarchical features reflecting a power-law behavior which can be a signature of self-organization. Further, the transition of three distinct phases driven by resolution parameter is observed which could correspond to various important brain states. This resolution parameter could thus reflect a key parameter that controls and balances the energy distribution in the brain network.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2019.05.015DOI Listing

Publication Analysis

Top Keywords

resolution parameter
12
brain networks
8
hamiltonian function
8
organization complex
4
brain
4
complex brain
4
networks energy
4
energy distributions
4
distributions phase
4
phase shift
4

Similar Publications

Purpose: Real‑time magnetic resonance-guided radiation therapy (MRgRT) integrates MRI with a linear accelerator (Linac) for gating and adaptive radiotherapy, which requires robust image‑quality assurance over a large field of view (FOV). Specialized phantoms capable of accommodating this extensive FOV are therefore essential. This study compares the performance of four commercial MRI phantoms on a 0.

View Article and Find Full Text PDF

AI-informed retinal biomarkers predict 10-year risk of onset of multiple hematological malignancies.

Eur J Cancer

August 2025

Emory University, Atlanta, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Atlanta Veterans Administration Medical Center, Atlanta, USA. Electronic address:

Background: Early detection of hematological malignancies improves long-term survival but remains a critical challenge due to heterogeneity in clinical presentation. Chronic inflammation is a key driver in hematologic cancers and is known to induce compensatory microvascular changes. High-resolution, non-invasive retinal imaging can allow the quantification of microvascular changes for the early detection of hematological malignancies.

View Article and Find Full Text PDF

Objective: Diffusion magnetic resonance imaging (dMRI) often suffers from low spatial and angular resolution due to inherent limitations in imaging hardware and system noise, adversely affecting the accurate estimation of microstructural parameters with fine anatomical details. Deep learning-based super-resolution techniques have shown promise in enhancing dMRI resolution without increasing acquisition time. However, most existing methods are confined to either spatial or angular super-resolution, disrupting the information exchange between the two domains and limiting their effectiveness in capturing detailed microstructural features.

View Article and Find Full Text PDF

"Characterization of visual function parameters in relation to macular pigment optical density in a pediatric population".

Graefes Arch Clin Exp Ophthalmol

September 2025

Department of Physics of Condensed Matter, Optics Area. Vision Research Group (CIVIUS), University of Seville, Avenida de la Reina Mercedes s/n (41012), Seville, Spain.

Purpose: To analyze the relationship between various visual function parameters (refractive status, visual acuity and contrast sensitivity) and macular pigment optical density (MPOD) values, as well as dietary intake of lutein and zeaxanthin in a pediatric population.

Methods: Thirty-six healthy White pediatric patients participated in this cross-sectional study conducted at the Optometry Clinic (Faculty of Pharmacy, Seville, Spain). MPOD values were measured using the MPSII (Macular Pigment Screener II).

View Article and Find Full Text PDF

Echolocating bats provide vital ecosystem services and can be monitored effectively using passive acoustic monitoring (PAM) techniques. Duty-cycle subsampling is widely used to collect PAM data at regular ON/OFF cycles to circumvent battery and storage capacity constraints for long-term monitoring. However, the impact of duty-cycle subsampling and potential detector errors on estimating bat activity has not been systematically investigated for bats.

View Article and Find Full Text PDF