Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
While chromatin immunoprecipitation has become a widely-used method in the field of transcription regulation studies, serious limitations connected to the complexity and relatively little standardization of the method serve as obstacles for its use in clinical research. In this paper we introduce a method for developing bacteriophage-based controls for the better standardization of the chromatin immunoprecipitation reactions. Random phage display libraries were selected with ChIP-grade antibodies for several rounds and individual monoclonal phages were isolated. These monoclonal phages can be propagated, characterized, capillary sequenced and if needed later cloned from in-silico data. Using such control tools allows for a better characterization of the immunoprecipitation stage needed for further clinical research in the field of chromatin-immunoprecipitation-based studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2019.05.009 | DOI Listing |