Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ion mobility mass spectrometry (IM-MS) allows separation of native protein ions into "conformational families". Increasing the IM resolving power should allow finer structural information to be obtained and can be achieved by increasing the length of the IM separator. This, however, increases the time that protein ions spend in the gas phase and previous experiments have shown that the initial conformations of small proteins can be lost within tens of milliseconds. Here, we report on investigations of protein ion stability using a multipass traveling wave (TW) cyclic IM (cIM) device. Using this device, minimal structural changes were observed for Cytochrome C after hundreds of milliseconds, while no changes were observed for a larger multimeric complex (Concanavalin A). The geometry of the instrument (Q-cIM-ToF) also enables complex tandem IM experiments to be performed, which were used to obtain more detailed collision-induced unfolding pathways for Cytochrome C. The instrument geometry provides unique capabilities with the potential to expand the field of protein analysis via IM-MS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006968PMC
http://dx.doi.org/10.1021/acs.analchem.8b05641DOI Listing

Publication Analysis

Top Keywords

protein ions
12
gas phase
8
ion mobility
8
traveling wave
8
changes observed
8
protein
5
phase stability
4
stability protein
4
ions cyclic
4
cyclic ion
4

Similar Publications

Microbial contamination of absorbable collagen membranes used in guided bone regeneration (GBR) may compromise healing outcomes. This study aimed to investigate whether the minimum inhibitory concentration (MIC) of hydrogen peroxide (HO) can improve the antibacterial effect of indocyanine green (ICG)-mediated antimicrobial photodynamic therapy (PDT) on absorbable collagen membranes while reducing the need for high HO concentrations. A laboratory-based model was developed using Streptococcus sanguinis and Staphylococcus aureus.

View Article and Find Full Text PDF

Metal ions play a vital role in the health of the modern human body, but deficiencies in mineral elements have created health risks worldwide. However, mineral supplements currently available on the market are very limited due to poor solubility, low bioavailability, and the possibility of adverse effects on the gastrointestinal tract. In contrast, protein-derived metal-chelating peptides have received a lot of attention because of their stability, safety, and very high bioavailability.

View Article and Find Full Text PDF

In the cardiovascular system, elastic fibres exert a fundamental role providing the long-range elasticity required for physiological functions. Elastic fibres are complex in composition and structure containing, in addition to elastin, a wide range of matrix components, such as microfibrillar proteins, calcium-binding proteins and glycosaminoglycans. Changes in composition and/or structure can affect the biomechanics of the tissue as well as the intrinsic affinity of elastin for Ca ions.

View Article and Find Full Text PDF

An ongoing goal of top-down mass spectrometry is to increase the performance for larger proteins. Using higher energy activation methods, like 193 nm ultraviolet photodissociation (UVPD), offers the potential to cause more extensive fragmentation of large proteins and thereby yield greater sequence coverage. Obtaining high sequence coverage requires confident identification and assignment of fragment ions, and this process is hampered by spectral congestion and low signal-to-noise ratio (S/N) of the fragment ions.

View Article and Find Full Text PDF

Analysis of the toxicity and mechanisms of osteoporosis caused by cigarette toxicants using network toxicology and molecular docking techniques.

Sci Total Environ

September 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China. Electronic address:

The objective of this research was to use a network toxicology approach to examine the possible toxicity of the cigarette toxicants nicotine and coal tar that cause osteoporosis (OP) as well as its molecular processes. We determined the primary chemical structures and 128 targets of action of tar and nicotine using the Swiss Target Prediction, NP-MRD, and PubChem databases. We discovered that genes including DNAJB1, CCDC8, LINC00888, ATP6V1G1, MPV17L2, PPCS, and TACC1 had a disease prognostic guiding value by LASSO analysis and differential analysis of GEO microarray data.

View Article and Find Full Text PDF