A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Intake of psyllium seed husk reduces white matter damage in a rat model of chronic cerebral hypoperfusion. | LitMetric

Intake of psyllium seed husk reduces white matter damage in a rat model of chronic cerebral hypoperfusion.

Nutr Res

Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea. Electronic address:

Published: July 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vascular dementia (VaD) develops through a pre-VaD step during which blood vessels narrow due to atherosclerosis attributed to risk factors, including hyperlipidemia. This is followed by a VaD progression step during which inadequate blood supply results in white matter damage and consequent cognitive impairment. Furthermore, administration of arabinoxylan attenuated white matter damage in a rat model of VaD. Thus, we hypothesized that consumption of psyllium seed husk (PSH), containing a high level of arabinoxylan (~60%), could inhibit the VaD progression step. To test this hypothesis, rats were supplemented with PSH at various dosages for 33 days in a model of bilateral common carotid artery occlusion. PSH supplementation decreased astrocytic and microglial activation in the optic tract (opt) and, consequently, attenuated white matter damage in the opt. Attenuation of white matter damage resulted in improvement of pupillary light reflex, an indicator reflecting intactness of the opt. In addition, PSH treatment improved survival of glial cells cultured under hypoxic and glucose-deprived conditions by inhibiting both apoptosis and autophagy. These findings indicate that PSH consumption can inhibit the VaD progression step through a decrease of white matter damage. Therefore, these results support our hypothesis that PSH consumption prevents VaD due to the high arabinoxylan content in the rat model. PSH consumption has already been shown to reduce risk factors, thereby inhibiting the pre-VaD step. Consequently, PSH consumption can contribute to the prevention of VaD by inhibiting both the pre-VaD and VaD progression steps. In conclusion, our rat study suggests that PSH might be a candidate to explore its use in clinical studies to reduce VaD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nutres.2019.04.002DOI Listing

Publication Analysis

Top Keywords

white matter
24
matter damage
24
vad progression
16
psh consumption
16
rat model
12
progression step
12
vad
9
psh
9
psyllium seed
8
seed husk
8

Similar Publications