Fingerprinting Orientation Distribution Functions in diffusion MRI detects smaller crossing angles.

Neuroimage

Center for Advanced Imaging Innovation and Research (CAI(2)R), NYU School of Medicine, New York, NY, USA; Center for Biomedical Imaging, Dept. of Radiology, NYU School of Medicine, New York, NY, USA.

Published: September 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diffusion tractography is routinely used to study white matter architecture and brain connectivity in vivo. A key step for successful tractography of neuronal tracts is the correct identification of tract directions in each voxel. Here we propose a fingerprinting-based methodology to identify these fiber directions in Orientation Distribution Functions, dubbed ODF-Fingerprinting (ODF-FP). In ODF-FP, fiber configurations are selected based on the similarity between measured ODFs and elements in a pre-computed library. In noisy ODFs, the library matching algorithm penalizes the more complex fiber configurations. ODF simulations and analysis of bootstrapped partial and whole-brain in vivo datasets show that the ODF-FP approach improves the detection of fiber pairs with small crossing angles while maintaining fiber direction precision, which leads to better tractography results. Rather than focusing on the ODF maxima, the ODF-FP approach uses the whole ODF shape to infer fiber directions to improve the detection of fiber bundles with small crossing angle. The resulting fiber directions aid tractography algorithms in accurately displaying neuronal tracts and calculating brain connectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336899PMC
http://dx.doi.org/10.1016/j.neuroimage.2019.05.024DOI Listing

Publication Analysis

Top Keywords

fiber directions
12
orientation distribution
8
distribution functions
8
crossing angles
8
brain connectivity
8
neuronal tracts
8
fiber
8
fiber configurations
8
odf-fp approach
8
detection fiber
8

Similar Publications

Linear magnetic nanoparticle structures as key feature in magnetic particle imaging.

Phys Med Biol

September 2025

Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University Medical Faculty, Pauwelsstraße 20, Aachen, 52074, GERMANY.

Objective: Magnetic particle imaging (MPI) opens huge possibilities in image-guided therapy. Its effectiveness is strongly influenced by the quality of the magnetic nanoparticles (MNP) used as tracers. Besides MNP optimization following different synthesis routes, MNP assembly into linear structures can significantly enhance their performance in MPI.

View Article and Find Full Text PDF

Ordered alkene-alkyne alternating conjugation in polyimides: A dual-strategy approach to ultralow dielectric constant and high thermal conductivity.

J Colloid Interface Sci

September 2025

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China. Electronic address:

Polyimide (PI) faces significant challenges in highly integrated and high-frequency electronic devices due to its inherently low thermal conductivity and relatively high dielectric constant (D). In this study, topologically micro-crosslinked PI films were synthesized by incorporating highly conjugated multi-amino polydiacetylene (MAPDA) into a fluorinated PI matrix. The unique alkene-alkyne alternating conjugated structure of MAPDA, combined with the strong electron-withdrawing trifluoromethyl groups in the matrix, promotes charge redistribution and reduces the dipole moment and polarizability.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) enable direct communication between the brain and computers. However, their long-term functionality remains limited due to signal degradation caused by acute insertion trauma, chronic foreign body reaction (FBR), and biofouling at the device-tissue interface. To address these challenges, we introduce a multifunctional surface modification strategy called targeting-specific interaction and blocking nonspecific adhesion (TAB) coating for flexible fiber, achieving a synergistic integration of mechanical compliance and biochemical stability.

View Article and Find Full Text PDF

Microfibers are pollutants of increasing concern, as they accumulate in aquatic environments and pose risks to living organisms. Once released, they undergo degradation processes that reduce their size and enhance their ability to interact with biological systems. Among these processes, photodegradation is a key driver, leading to fiber fragmentation and structural shrinkage.

View Article and Find Full Text PDF

Fiber-optic bronchoscopy (FOB) plays a crucial role in the diagnosis and management of various pulmonary diseases by offering direct visualization of the airways and enabling targeted sampling for microbiological and histopathological evaluation. This study aimed to assess the clinical, radiological, microbiological, and histopathological profiles of patients undergoing FOB. A retrospective analysis of 103 participants who underwent the procedure over one year was conducted.

View Article and Find Full Text PDF