98%
921
2 minutes
20
Addictive behaviors, including relapse, are thought to depend in part on long-lasting drug-induced adaptations in dendritic spine signaling and morphology in the nucleus accumbens (NAc). While the influence of activity-dependent actin remodeling in these phenomena has been studied extensively, the role of microtubules and associated proteins remains poorly understood. We report that pharmacological inhibition of microtubule polymerization in the NAc inhibited locomotor sensitization to cocaine and contextual reward learning. We then investigated the roles of microtubule end-binding protein 3 (EB3) and SRC kinase in the neuronal and behavioral responses to volitionally administered cocaine. In synaptoneurosomal fractions from the NAc of self-administering male rats, the phosphorylation of SRC at an activating site was induced after 1 d of withdrawal, while EB3 levels were increased only after 30 d of withdrawal. Blocking SRC phosphorylation during early withdrawal by virally overexpressing SRCIN1, a negative regulator of SRC activity known to interact with EB3, abolished the incubation of cocaine craving in both male and female rats. Conversely, mimicking the EB3 increase observed after prolonged withdrawal increased the motivation to consume cocaine in male rats. In mice, the overexpression of either EB3 or SRCIN1 increased dendritic spine density and altered the spine morphology of NAc medium spiny neurons. Finally, a cocaine challenge after prolonged withdrawal recapitulated most of the synaptic protein expression profiles observed at early withdrawal. These findings suggest that microtubule-associated signaling proteins such as EB3 cooperate with actin remodeling pathways, notably SRC kinase activity, to establish and maintain long-lasting cellular and behavioral alterations following cocaine self-administration. Drug-induced morphological restructuring of dendritic spines of nucleus accumbens neurons is thought to be one of the cellular substrates of long-lasting drug-associated memories. The molecular basis of these persistent changes has remained incompletely understood. Here we implicate for the first time microtubule function in this process, together with key players such as microtubule-bound protein EB3 and synaptic SRC phosphorylation. We propose that microtubule and actin remodeling cooperate during withdrawal to maintain the plastic structural changes initially established by cocaine self-administration. This work opens new translational avenues for further characterization of microtubule-associated regulatory molecules as putative drug targets to tackle relapse to drug taking.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636087 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0024-19.2019 | DOI Listing |
Virol J
May 2025
Australian Center for Public and Population Health Research, Faculty of Health, University of Technology, P.O. Box 123, Sydney, NSW, 2007, Australia.
Background: MAb114, REGN-EB3, Remdesivir, and ZMapp, which are monoclonal antibody-based treatments, have been compared and shown to be promising therapies against the Ebola Virus Disease (EVD). There has been no comparison between these medications and standard treatment (without antiviral). Our study aimed to examine the contribution of each regimen compared to standard treatment on the survival of EVD patients and assess whether this association was modified by EVD vaccination (rVSV-ZEBOV Ebola vaccine) status.
View Article and Find Full Text PDFCell Mol Life Sci
May 2025
Centre de Biologie Intégrative, CNRS &, Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France.
Microtubules in many differentiated cell types are reorganized from a radial, centrosome-bound array into a cell type-specific, non-centrosomal network. In epidermal keratinocytes, a subset of microtubules is organized from the cell cortex. These microtubules are anchored to desmosomes, with ninein serving as a linker protein.
View Article and Find Full Text PDFNat Commun
April 2025
Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
In 2018, a clinical trial of four investigational therapies for Ebola virus disease (EVD), known as the PALM trial, was conducted in the Democratic Republic of Congo. All patients received either the antiviral remdesivir (RDV) or a monoclonal antibody product: ZMapp, mAb114 (Ebanga), or REGN-EB3 (Inmazeb). The study concluded that both mAb114 and REGN-EB3 were superior to ZMapp and RDV in reducing mortality from EVD.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
Protocadherin 19 (PCDH19) is an adhesion molecule involved in cell-cell interaction whose mutations cause a drug-resistant form of epilepsy, named PCDH19-Clustering Epilepsy (PCDH19-CE, MIM 300088). The mechanism by which altered PCDH19 function drive pathogenesis is not yet fully understood. Our previous work showed that PCDH19 dysfunction is associated with altered orientation of the mitotic spindle and accelerated neurogenesis, suggesting a contribution of altered cytoskeleton organization in PCDH19-CE pathogenesis in the control of cell division and differentiation.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Biomedical Imaging and Data Analysis, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021.
One of the mechanisms of calcium signalling in neurons is store-operated calcium entry (SOCE), which is activated when the calcium concentration in the smooth endoplasmic reticulum (ER) decreases and its protein-calcium sensor STIM (stromal interacting molecule) relocate to the endoplasmic reticulum and plasma membrane junctions, forms clusters and induces calcium entry. In electrically non-excitable cells, STIM1 is coupled with the positive end of a tubulin microtubule through interaction with EB1 (end-binding) protein, which controls its oligomerization, SOCE and participates in ER movement. STIM2 homologue, which is specific for mature hippocampal dendritic spines, is known to interact with EB3 protein, however, not much is known about the role of this interaction in STIM2 clustering or ER trafficking in neurons.
View Article and Find Full Text PDF