98%
921
2 minutes
20
The impact of dietary fat on the risk of cardiovascular disease (CVD) has been extensively studied in recent decades. Solid evidence indicates that replacing saturated fatty acids (SFAs) with polyunsaturated fatty acids (PUFAs) decreases blood cholesterol levels and prevents CVD and CVD mortality. Studies indicate that fat quality also may affect insulin sensitivity and hence, the risk of type 2 diabetes (T2D). A high intake of SFAs has shown to increase the risk of T2D in prospective studies, while a high intake of PUFAs reduces the risk. Whether PUFAs from marine or vegetable sources affect glycemic regulation differently in T2D remains to be elucidated. The aim of the present review was therefore to summarize research on human randomized, controlled intervention studies investigating the effect of dietary PUFAs on glycemic regulation in T2D. About half of the studies investigating the effect of fish, fish oils, vegetable oils, or nuts found changes related to glycemic control in people with T2D, while the other half found no effects. Even though some of the studies used SFA as controls, the majority of the included studies compared PUFAs of different quality. Considering that both marine and vegetable oils are high in PUFAs and hence both oils may affect glycemic regulation, the lack of effect in several of the included studies may be explained by the use of an inappropriate control group. It is therefore not possible to draw a firm conclusion, and more studies are needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566834 | PMC |
http://dx.doi.org/10.3390/nu11051067 | DOI Listing |
RSC Adv
September 2025
Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
Polyunsaturated fatty acids (PUFAs), fatty acids with multiple unsaturated carbon-carbon bonds, constitute a crucial class of lipids. While the vast diversity of PUFA species arises from their structural variations, most of them are poorly investigated due to their limited availability. Here, we utilize solid-phase synthesis of PUFAs, which we have recently developed, to construct a PUFA library.
View Article and Find Full Text PDFFront Microbiol
August 2025
Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa.
Phytophthora root rot caused by the hemibiotrophic oomycete, is a major biotic hindrance in meeting the ever-increasing demand for avocados. In addition, the pathogen is a global menace to agriculture, horticulture and forestry. Phosphite trunk injections and foliar sprays remain the most effective chemical management strategy used in commercial avocado orchards against the pathogen.
View Article and Find Full Text PDFFront Oral Health
August 2025
Conservative Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, Nitte (deemed to be) University, Mangalore, India.
Short-chain fatty acids (SCFAs), primarily acetate (C2), propionate (C3), and butyrate (C4), are crucial microbial metabolites formed by the fermentation of dietary fibers by gut microbiota in the colon. These SCFAs, characterized by fewer than six carbon atoms, serve as an essential energy source for colonic epithelial cells and contribute approximately 10% of the body's total energy requirement. They are central to maintaining gut health through multiple mechanisms, including reinforcing intestinal barrier function, exerting anti-inflammatory effects, regulating glucose and lipid metabolism, and influencing host immune responses.
View Article and Find Full Text PDFFood Sci Nutr
September 2025
Fats and Oils Department, Food Industries and Nutrition Research Institute National Research Centre Cairo Egypt.
This study developed a vegan chocolate spread using spray-dried plant-based milk powders (soy, lentil, and rice), fortified with nano-liposomal vitamin D3 and an oleogel-balanced omega fatty acid to enhance nutritional quality. The plant-based milk powders exhibited high protein (up to 26.8% in soy), fiber, and micronutrients.
View Article and Find Full Text PDFVet World
July 2025
Research Center for Horticulture, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor No.32, Pakansari, Kec. Cibinong, Kabupaten Bogor, West Java 16915, Indonesia.
Background And Aim: Purple sweet potatoes ( var. Ayamurasaki) possess high nutritional potential due to their rich content of amino acids, minerals, and fatty acids. However, their nutritional profile can be further improved through fermentation.
View Article and Find Full Text PDF