Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Here we demonstrate that three synthetic tripeptides containing conformationally flexible γ-aminobutyric acid (γ-Abu) as the N-terminal residue form supramolecular β-sheet and nanofibrillar aggregates upon self-association in aqueous medium. Congo red and thioflavin T binding study establish that these nanofibrillar aggregates are amyloidogenic in nature. The MTT cell survival assay suggests that these amyloid-like nanofibrillar aggregates are nontoxic toward cultured Neuro 2A cells. Interestingly, none of these tripeptides bear sequence identity with any amyloid forming proteins or peptides; however upon self-association, they form supramolecular β-sheet and amyloid-like nanofibrils those are nontoxic in nature. The results highlight the self-assembling nature of the conformationally flexible peptides in aqueous environment and support the hypothesis that amyloid formation is the intrinsic property of the polypeptide chain. Also the cytotoxicity is not predictive from amyloid fibril formation alone. Such nontoxic amyloid fibrils can be exploited in future to design functional biomaterials for various biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.9b00119DOI Listing

Publication Analysis

Top Keywords

supramolecular β-sheet
12
nanofibrillar aggregates
12
nontoxic amyloid
8
amyloid fibrils
8
γ-aminobutyric acid
8
n-terminal residue
8
conformationally flexible
8
form supramolecular
8
amyloid
5
engineering supramolecular
4

Similar Publications

Harnessing Radical-Based Dynamic Covalent Chemistry and Supramolecular Synthon for Directional Self-Assembly.

J Am Chem Soc

September 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

The discovery of new weak supramolecular interactions and supramolecular synthons is essential for directing self-assembly processes with enhanced precision, diversity, and functionality in complex molecular architectures. Here, we report the controlled self-assembly of diverse supramolecular architectures by a new directional bonding approach through the integration of radical-based dynamic covalent chemistry and supramolecular synthons. A novel macrocyclic synthon, , with a linear direction is constructed via radical-based dynamic covalent bonds from the phenothiazine building block substituted with two dicyanomethyl radicals.

View Article and Find Full Text PDF

Exosomal Proteome from Hepatocellular Carcinoma Patient-Derived Xenograft Mice Serves as Identity of Liver Cancer.

J Proteome Res

September 2025

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China.

Hepatocellular carcinoma (HCC) constitutes approximately 90% of liver cancers, yet its early detection remains challenging due to the low sensitivity of current diagnostic methods and the difficulty in identifying minimal cancer cells within the body. This study employed a patient-derived xenograft (PDX) mouse model to screen for biomarkers, leveraging its advantage of low background interference compared to human serum exosome studies. Using a novel microextraction technique, exosomes were isolated from just one microliter of serum from HCC PDX mice, followed by proteomic profiling.

View Article and Find Full Text PDF

Sulfone bonding is an emerging dipole-dipole interaction between sulfone groups. Herein, sulfone bonding is used for the first time for engineering tough hydrogels. Sulfone-bond-toughened hydrogels are prepared by copolymerizing acrylamide with a sulfone-functionalized monomer.

View Article and Find Full Text PDF

The exclusive formation of artificial multicomponent assemblies remains a significant challenge, in contrast to the well-established organization observed in natural systems, due to intrinsic entropic constraints. To overcome this limitation, recent efforts have been focused on developing precision self-assembly strategies for the rational construction of such architectures. Here, we construct an ideal complementary pair of 2,2':6',2″-terpyridine (tpy)-based ligands by fine-tuning the substituent bulkiness, which enables the quantitative formation of robust nested cages through efficient dynamic heteroleptic complexation with multivalent coordination.

View Article and Find Full Text PDF

Cyclic peptides (CPs) are versatile building blocks whose conformational constraints foster ordered supramolecular architectures with potential in biomedicine, nanoelectronics, and catalysis. Herein, we report the development of biomimetic antifreeze materials by conjugating CPs bearing ice-binding residues to 4-arm polyethylene glycol (PEG) via click chemistry. The concentration-dependent self-assembly of these CP-PEG conjugates induces programmable morphological transitions, forming nanotube networks above the critical aggregation concentration (CAC) and two-dimensional nanosheet networks near the CAC.

View Article and Find Full Text PDF