Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Insecticide resistance is a paradigm of microevolution, and insecticides are responsible for the strongest cases of recent selection in the genome of Here we use a naïve population and a novel insecticide class to examine the ab initio genetic architecture of a potential selective response. Genome-wide association studies (GWAS) of chlorantraniliprole susceptibility reveal variation in a gene of major effect, (), which we validate with linkage mapping and transgenic manipulation of gene expression. We propose that allelic variation in alters sensitivity to the calcium depletion attributable to chlorantraniliprole's mode of action. GWAS also reveal a network of genes involved in neuromuscular biology. In contrast, phenotype to transcriptome associations identify differences in constitutive levels of multiple transcripts regulated by cnc, the homolog of mammalian Nrf2. This suggests that genetic variation acts in to regulate multiple metabolic enzymes in this pathway. The most outstanding association is with the transcription level of which is also affected in by copy number variation. Transgenic overexpression of reduces susceptibility to both chlorantraniliprole and the closely related insecticide cyantraniliprole. This systems genetics study reveals multiple allelic variants segregating at intermediate frequency in a population that is completely naïve to this new insecticide chemistry and it foreshadows a selective response among natural populations to these chemicals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535026 | PMC |
http://dx.doi.org/10.1073/pnas.1821713116 | DOI Listing |