Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Paper-based optoelectronic noses (OENs) are being developed based on printing of organic and organometallic reagents on hydrophilic substrates that can visualize the odor of volatiles. In this work, we report for the first time the use of nanoparticles for fabrication of novel paper-based OENs, which represent much higher sensitivity and produce simple but discriminant colorimetric signature of volatile metabolomes. This nano-optoelectronic nose (NOEN) system, which is fabricated by dropping of gold and silver nanoparticles (each synthesized by 8 chemical species) on the paper, gives obvious colorimetric signatures for chemicals having individual or combined functional groups. Owning to their ultrasensitivity, these simple devices need very small amounts of analytes. These devices could detect and discriminate 45 volatile organic compounds in 9 chemical families including phenols, alchohols, ketones, aldehydes, amines, acids, esters, arenes, and hydrocarbons. In addition to excellent discrimination ability, this NOEN sensor shows ultrahigh sensitivity such that could determine volatile compounds with detection limits around or lower than 10 ppb. Moreover, it can be combined with multivariate calibration methods for quantitative analysis of a metabolite in a complex mixture.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.9b00680DOI Listing

Publication Analysis

Top Keywords

volatile organic
8
organic compounds
8
structural elucidation
4
elucidation ultrasensitive
4
ultrasensitive analyses
4
volatile
4
analyses volatile
4
compounds paper-based
4
paper-based nano-optoelectronic
4
nano-optoelectronic noses
4

Similar Publications

Direct Effects of Polyploidization on Floral Scent.

J Chem Ecol

September 2025

Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.

Polyploidy is an important driver of the evolution and diversification of flowering plants. Several studies have shown that established polyploids differ from diploids in floral morphological traits and that polyploidization directly affects these traits. However, for floral scent, which is key to many plant-pollinator interactions, only a few studies have quantified differences between established cytotypes, and the direct effects of polyploidization on floral scent are not yet known.

View Article and Find Full Text PDF

NO reduction to HONO by small α-hydroxycarbonyls: a laboratory investigation relevant to nighttime production of atmospheric HONO.

Phys Chem Chem Phys

September 2025

School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India.

This work presents a gas-phase experimental study on the reduction of NO (nitrogen dioxide) to HONO (nitrous acid) by two atmospherically significant volatile organic compounds (VOCs), namely, glycolaldehyde (Gla) and hydroxyacetone (HAc), under a simulated tropospheric condition. FTIR spectroscopic probing reveals that HONO is the only gaseous reduced product of NO in each reaction. The measured data indicate that the reactions in both cases occur in a 2 : 1 stoichiometry with respect to NO and Gla/HAc.

View Article and Find Full Text PDF

Ionic liquids (ILs) are a class of organic salts with melting points below 100°C. Owing to their unique chemical and physical properties, they are used as solvents and catalysts in various chemical transformations, progressively replacing common volatile organic solvents (VOCs) in green synthetic applications. However, their intrinsic ionic nature can restrict the use of mass spectrometric techniques to monitor the time progress of a reaction occurring in an IL medium, thus preventing one from following the formation of the reaction products or intercepting the reaction intermediates.

View Article and Find Full Text PDF

The study of electrochemical oxidations has wide-ranging implications, from the development of new electrocatalysts for fuel cells for energy conversion, to the synthesis of fine chemicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) has been used for decades as a sustainable, metal-free mediator for chemical oxidations and is now being used for electrochemical oxidations. We describe here a novel approach to TEMPO-mediated electrooxidations, in which the chemical input and waste generated during electrooxidations of alcohols are minimized by using a multifunctional room temperature ionic liquid (RTIL) to facilitate flow electrosynthesis.

View Article and Find Full Text PDF

Naomaohu lignite (NL) from Hami, Xinjiang, was ultrasonically extracted with a mixed solvent of CS and acetone (in equal volumes) to obtain the extract residue (ER). The ER was then separated based on density differences with CCl to yield the corresponding light residue (NL-L). The composition and structural characteristics of the light residue were characterized by proximate, ultimate, infrared, and thermogravimetric analyses (TG-DTG).

View Article and Find Full Text PDF