A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Saliency Inside: Learning Attentive CNNs for Content-based Image Retrieval. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In content-based image retrieval (CBIR), one of the most challenging and ambiguous tasks are to correctly understand the human query intention and measure its semantic relevance with images in the database. Due to the impressive capability of visual saliency in predicting human visual attention that is closely related to the query intention, this paper attempts to explicitly discover the essential effect of visual saliency in CBIR via qualitative and quantitative experiments. Toward this end, we first generate the fixation density maps of images from a widely used CBIR dataset by using an eye-tracking apparatus. These ground-truth saliency maps are then used to measure the influence of visual saliency to the task of CBIR by exploring several probable ways of incorporating such saliency cues into the retrieval process. We find that visual saliency is indeed beneficial to the CBIR task, and the best saliency involving scheme is possibly different for different image retrieval models. Inspired by the findings, this paper presents two-stream attentive CNNs with saliency embedded inside for CBIR. The proposed network has two streams that simultaneously handle two tasks. The main stream focuses on extracting discriminative visual features that are tightly related to semantic attributes. Meanwhile, the auxiliary stream aims to facilitate the main stream by redirecting the feature extraction to the salient image content that human may pay attention to. By fusing these two streams into the Main and Auxiliary CNNs (MAC), image similarity can be computed as the human being does by reserving conspicuous content and suppressing irrelevant regions. Extensive experiments show that the proposed model achieves impressive performance in image retrieval on four public datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2019.2913513DOI Listing

Publication Analysis

Top Keywords

image retrieval
16
visual saliency
16
saliency
9
attentive cnns
8
content-based image
8
query intention
8
main stream
8
image
6
cbir
6
visual
6

Similar Publications