98%
921
2 minutes
20
For the fulfilment of increasing global demand and associated challenges related to the supply of clean-and-safe water, PV has been considered as one of the most attractive and promising areas in desalinating salty-water of varied salinities. In pervaporative desalination, the sustainability, endurance, and structural features of membrane, along with operating parameters, play the dominant roles and impart paramount impact in governing the overall PV efficiency. Indeed, polymeric- and organic-membranes suffer from several drawbacks, including inferior structural stability and durability, whereas the fabrication of purely inorganic membranes is complicated and costly. Therefore, recent development on the high-performance and cost-friendly PV membrane is mostly concentrated on synthesizing composite- and NCP-membranes possessing the advantages of both organic- and inorganic-membranes. This review reflects the insights into the physicochemical properties and fabrication approaches of different classes of PV membranes, especially composite- and NCP-membranes. The mass transport mechanisms interrelated to the specialized structural features have been discussed. Additionally, the performance potential and application prospects of these membranes in a wide spectrum of desalination and wastewater treatment have been elaborated. Finally, the challenges and future perspectives have been identified in developing and scaling up different high-performance membranes suitable for broader commercial applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6572519 | PMC |
http://dx.doi.org/10.3390/membranes9050058 | DOI Listing |
RSC Adv
August 2025
School of Environmental & Safety Engineering, Liaoning Petrochemical University Fushun 113001 China.
Although pervaporation (PV) desalination is a promising solution to global freshwater scarcity, membranes suffer from unstable separation performance. This study utilized resource recycling to prepare a porous ceramic membrane using solid waste fly ash as raw material, which was then combined with polyimide (PI) to produce a high-performance composite membrane (abbreviated to as PI/ceramic membrane). In this composite membrane, the ceramic membrane provides mechanical support and promotes rapid water passage, while the PI layer intercepts hydrated salt ions through size screening and electronic repulsion.
View Article and Find Full Text PDFNat Commun
August 2025
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China.
Pervaporation (PV) desalination, a promising technology to produce clean water, lacks some fundamental understanding of the molecular transport mechanism. We perform molecular dynamic simulations to unravel the molecular transport mechanism in polyvinyl alcohol PV desalination membranes. It is revealed that the dispersion forms of confined water molecules transform from nano-sized clusters to single molecules as the concentration gradient decreases within the membrane.
View Article and Find Full Text PDFRSC Adv
June 2025
Department of Pharmacy, Anhui Medical College Hefei China
Desalination is the process of removing salts and minerals from saline water to produce potable water. It is a critical global challenge due to the increasing demand for freshwater. Pervaporation (PV) is a membrane-based separation process that combines sorption and permeation, and it has emerged as a promising alternative to traditional desalination methods.
View Article and Find Full Text PDFMembranes (Basel)
October 2024
Membrane Separations Lab, Chemical Engineering and Process Technology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, TS, India.
Integrating nanomaterials into membranes has revolutionized selective transport processes, offering enhanced properties and functionalities. Mixed-matrix membranes (MMMs) are nanocomposite membranes (NCMs) that incorporate inorganic nanoparticles (NPs) into organic polymeric matrices, augmenting mechanical strength, thermal stability, separation performance, and antifouling characteristics. Various synthesis methods, like phase inversion, layer-by-layer assembly, electrospinning, and surface modification, enable the production of tailored MMMs.
View Article and Find Full Text PDFMembranes (Basel)
October 2024
Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213, 93-005 Łódź, Poland.
Composite polymer membranes were obtained using the so-called dry phase inversion and were used for desalination of diluted saline water solutions by pervaporation (PV) method. The tests used a two-layer backing, porous, ultrafiltration commercial membrane (PS20), which consisted of a supporting polyester layer and an active polysulfone layer. The active layer of PV membranes was obtained in an aqueous environment, in the presence of a surfactant, by cross-linking a 5 wt.
View Article and Find Full Text PDF