98%
921
2 minutes
20
The phycobilisome, the cyanobacterial light harvesting complex, is a huge phycobiliprotein containing extramembrane complex, formed by a core from which rods radiate. The phycobilisome has evolved to efficiently absorb sun energy and transfer it to the photosystems via the last energy acceptors of the phycobilisome, ApcD and ApcE. ApcF also affects energy transfer by interacting with ApcE. In this work we studied the role of ApcD and ApcF in energy transfer and state transitions in Synechococcus elongatus and Synechocystis PCC6803. Our results demonstrate that these proteins have different roles in both processes in the two strains. The lack of ApcD and ApcF inhibits state transitions in Synechocystis but not in S. elongatus. In addition, lack of ApcF decreases energy transfer to both photosystems only in Synechocystis, while the lack of ApcD alters energy transfer to photosystem I only in S. elongatus. Thus, conclusions based on results obtained in one cyanobacterial strain cannot be systematically transferred to other strains and the putative role(s) of phycobilisomes in state transitions need to be reconsidered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2019.04.004 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
September 2025
College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
The interactions of three berberine mid-chain fatty acid salts ([BBR][C], n = 6, 7, 8) with lysozyme (Lyz) are investigated in detail using multi-spectroscopic and molecular docking techniques. Steady-state fluorescence and UV-visible absorption experiments suggest that the binding mechanism of [BBR][C] on Lyz is a static quenching with a binding ratio of 1:1. The compound [BBR][C] exhibits a moderate binding affinity toward Lyz.
View Article and Find Full Text PDFCurr Opin Microbiol
September 2025
Cryptosporidiosis Laboratory, The Francis Crick Institute, London, United Kingdom. Electronic address:
The movement of molecules across the membranous barriers of a cell is fundamental to cellular homeostasis in every living organism. This vital process is facilitated through a mechanistically diverse class of proteins, collectively known as membrane transporters. Among these are so-called carrier proteins that can function in passive and active transport mechanisms.
View Article and Find Full Text PDFJ Econ Entomol
September 2025
Departamento de Ecología de Artrópodos y Manejo de Plagas, El Colegio de la Frontera Sur, Tapachula, Chiapas, Mexico.
Ionizing radiation is widely used in insect sterilization for pest control using the Sterile Insect Technique, which consists of the mass rearing of insects and their irradiation with gamma rays to release them in target areas where they will mate with wild females. However, there is a concern and controversy about the nuclear origin applied in this technique. One alternative for sterilization is the use of X-rays, which do not have a nuclear origin, are easier to operate, and do not generate radioactive waste.
View Article and Find Full Text PDFInorg Chem
September 2025
Laboratoire de Chimie Physique Matière et Rayonnement (LCPMR), CNRS UMR 7614, Sorbonne Université (SU), 4 place Jussieu, Paris 75005, France.
The one-photon KV X-ray photoelectron spectra of Na and its hydrated clusters [Na(HO)] ( = 1-6) are dominated by the unusual 1s → 1s3s transition. KV spectroscopy also reveals a pronounced redistribution of the 1s → 1s3p transition cross sections, directly correlated with hydration number and molecular arrangement. Its intrinsic two-step nature, involving simultaneous core ionization and core excitation, enables detailed investigation of solvation-induced electronic structure changes, including dipole-forbidden excitations, core-valence charge transfer, and subtle 1s → V energy shifts.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
The activation of methane and other gaseous hydrocarbons at low temperature remains a substantial challenge for the chemistry community. Here, we report an anaerobic photosystem based on crystalline borocarbonitride (BCN) supported Fe-O nanoclusters, which can selectively functionalize C-H bonds of methane, ethane, and higher alkanes to value-added organic chemicals at 12 °C. Scanning transmission electron microscopy and X-ray absorption spectroscopy corroborated the ultrafine FeOOH and FeO species in Fe-O clusters, which enhanced the interfacial charge transfer/separation of BCN as well as the chemisorption of methane.
View Article and Find Full Text PDF