Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: The aim was to investigate the influence of ultrasound and adenosine 5'-monophosphate (AMP) marination (UAMP) on tenderness and structure of myofibrillar proteins of beef.

Methods: Five groups, the untreated meat (Control), deionized water marination (DW), ultrasound followed by DW (UDW), AMP marination (AMP), and ultrasound followed by AMP (UAMP) were studied. Myofibrillar fragmentation, cooking loss, shear force, thermograms, histological observation of meats and myofibrillar proteins properties were investigated in these different treatments.

Results: The results showed that UAMP significantly increased MFI from 152 (control), 231 (AMP) and 307 (UDW) to 355 (P < 0.05), respectively. The lowest cooking loss, shear force and peak denaturation temperature were observed in UAMP. In histological observation, UDW and UAMP had more fragmented muscular bundles than the others. Furthermore, a drastic increase in α-helix and decrease in β-sheet of myofibrillar proteins was observed in UAMP, implying the disaggregation of protein samples. The synchronous fluorescence spectra of myofibrillar proteins in UAMP suggested the combination of ultrasound and AMP could accelerate the unfolding molecular structure and destroying hydrophobic interactions. The results of circular dichroism and synchronous fluorescence spectra for myofibrillar proteins coincided with the microstructures of beef.

Conclusion: The results indicate that ultrasound combined with AMP improved meat tenderness not only by disruption in muscle integrity, increasing water retention, but also altering their spatial structure of myofibrillar proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718909PMC
http://dx.doi.org/10.5713/ajas.18.0780DOI Listing

Publication Analysis

Top Keywords

myofibrillar proteins
28
structure myofibrillar
12
influence ultrasound
8
ultrasound adenosine
8
tenderness structure
8
myofibrillar
8
amp marination
8
ultrasound amp
8
cooking loss
8
loss shear
8

Similar Publications

Cardiotoxicity remains a major clinical challenge associated with various environmental and chemotherapeutic toxicants. Sunitinib (SNB) is a potent targeted cancer drug that is reported to induce severe organ damage including renal failure. Cirsiliol (CSL) is a natural flavone that exhibits marvelous pharmacological properties.

View Article and Find Full Text PDF

Frailty, often linked to sarcopenia, involves reduced muscle strength and mass. While sarcopenia has multiple causes, impaired muscle protein synthesis may contribute. Leucine and resistance training (RT) are anabolic stimuli, but the long-term effects of leucine combined with RT in pre/frail older women remain unclear.

View Article and Find Full Text PDF

Background: There is considerable variation in the anabolic action of ingesting protein-dense foods on the stimulation of postprandial myofibrillar protein synthesis rates (MPS) despite ingesting similar amounts of protein and essential amino acids (EAA) OBJECTIVES: To determine the effects of consuming high-fat pork (HFP), low-fat pork (LFP), or a carbohydrate control (CHO) on the MPS response METHODS: In a semi-crossover design, sixteen physically active adults (25 ± 5 y; 25.0 ± 2.3 kg·m; 12M, 4F) received primed-constant infusions of L-[ring-C]phenylalanine and performed an acute bout of resistance exercise.

View Article and Find Full Text PDF

Tussah pupa protein (TPP), rich in diverse bioactive components and demonstrating extensive physiological activities, has attracted attention in food processing. However, its limited emulsion stability restricts application potential, requiring improvement of techno-functional properties. The effects of myofibrillar protein (MP) compounding coupled with ultrasonic treatment on the emulsifying properties and nutritional value of TPP were systematically investigated from a multi-scale perspective in this study.

View Article and Find Full Text PDF

Hypothermal effects of cold anesthesia on the vitality and muscle quality of live Chinese mitten crab (Eriocheir sinensis).

Food Res Int

November 2025

Key Laboratory of Intelligent Food Logistic and Processing of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. Electronic address:

Crab encounters obstacles like elevated transportation expense and diminished survival rate. In the study, the effects of cold anesthesia (CA), including fast cooling (FC) and slow cooling (SC) anesthesia on the vitality state and muscle quality of Chinese mitten crab were researched. We found firstly that the CA dormancy temperature range of Chinese mitten crab was identified from -2 to 10 °C, and 7 °C was optimal.

View Article and Find Full Text PDF