Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent advancement in understanding cancer etiology has highlighted epigenetic deregulation as an important phenomenon leading to poor prognosis in glioblastoma (GBM). Polycomb repressive complex 2 (PRC2) is one such important epigenetic modifier reportedly altered in GBM. However, its defined mechanism in tumorigenesis still remains elusive. In present study, we analyzed our in-house ChIPseq data for H3k27me3 modified miRNAs and identified miR-490-3p to be the most common target in GBM with significantly downregulated expression in glioma patients in both TCGA and GBM patient cohort. Our functional analysis delineates for the first time, a central role of PRC2 catalytic unit EZH2 in directly regulating expression of this miRNA and its host gene CHRM2 in GBM. In accordance, cell line treatment with EZH2 siRNA and 5-azacytidine also confirmed its coregulation by CpG and histone methylation based epigenetic mechanisms. Furthermore, induced overexpression of miR-490-3p in GBM cell lines significantly inhibited key hallmarks including cellular proliferation, colony formation and spheroid formation, as well as epithelial-to-mesenchymal transition (EMT), with downregulation of multiple EMT transcription factors and promigratory genes (MMP9, CCL5, PIK3R1, ICAM1, ADAM17 and NOTCH1). We also for the first time report TGFBR1 and TGIF2 as two direct downstream effector targets of miR-490-3p that are also deregulated in GBM. TGIF2, a novel target, was shown to promote migration and EMT that could partially be rescued by miR-490-3p overexpression. Overall, this stands as a first study that provides a direct link between epigenetic modulator EZH2 and oncogenic TGF-β signaling involving novel miR-490-3p/TGIF2/TGFBR1 axis, that being targetable might be promising in developing new therapeutic intervention strategies for GBM.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.32360DOI Listing

Publication Analysis

Top Keywords

tgf-β signaling
8
migration emt
8
gbm
8
gbm cell
8
epigenetic
5
polycomb complex
4
complex mediated
4
mediated epigenetic
4
epigenetic reprogramming
4
reprogramming alters
4

Similar Publications

Dopamine (DA) signaling is essential for neurodevelopment and is particularly sensitive to disruption during adolescence. Protein restriction (PR) can impair DA dynamics, yet mechanistic insights remain limited due to challenges in real-time neurochemical sensing. Here, we present aptCFE, a robust implantable aptamer-based sensor fabricated via a reagent-free, 3 min electrochemical conjugation (E-conjugation) using amine-quinone chemistry.

View Article and Find Full Text PDF

The hallmarks of mechanosensitive ion channels have been observed for half a century in various cell lines, although their mechanisms and molecular identities remained unknown until recently. Identification of the bona fide mammalian mechanosensory Piezo channels resulted in an explosion of research exploring the translation of mechanical cues into biochemical signals and dynamic cell morphology responses. One of the Piezo isoforms - Piezo1 - is integral in the erythrocyte (red blood cell; RBC) membrane.

View Article and Find Full Text PDF

Rising atmospheric CO exposes plants to high-CO environments, while excessive nitrogen fertilizer use degrades soil, highlighting the need to reduce nitrogen input and cultivate vigorous cucumber seedlings under HC-LN conditions. Calcineurin B-like proteins (CBLs) sense calcium signals and regulate carbon/nitrogen metabolism via CBL-interacting protein kinases (CIPKs), though their roles in cucumber under HC-LN conditions are unclear. Here, we identified seven and 19 genes.

View Article and Find Full Text PDF

Incretin Signaling Neighborhoods and Adverse Drug Reactions.

Annu Rev Pharmacol Toxicol

September 2025

1Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden; email:

In light of the success of blockbuster drugs for type 2 diabetes and obesity based on the GLP-1 hormone, drugmakers have concentrated their efforts on developing new and improved variations that address the route of administration, dosing, pathway selectivity, or polypharmacology. While some of these modifications have demonstrated improved efficacy in clinical studies and offered exciting opportunities for treating other diseases, drug-induced shifts to the conformational landscape of target receptors may have consequences for side effects. Our review summarizes advances in the understanding of the biochemistry, pharmacogenomics, and molecular pharmacology of incretins and their cognate receptors.

View Article and Find Full Text PDF

β-Adrenergic Receptors - Not Always Outside-In.

Physiology (Bethesda)

September 2025

Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304.

Canonical activation of G-protein coupled receptors (GPCRs) by hormone binding occurs at the plasma membrane, resulting in the diffusion of second messengers to intracellular effector sites throughout the cell. In contrast, recent evidence suggests that functional GPCRs can induce signaling from distinct intracellular domains, contributing to specificity in signaling. Functional adrenergic receptors have been identified at intracellular sites in the cardiac myocyte such as endosomes, the sarcoplasmic reticulum, the Golgi and the inner nuclear membrane.

View Article and Find Full Text PDF