Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: The antimicrobial resistance (AMR) crisis represents a serious threat to public health and has resulted in concentrated efforts to accelerate development of rapid molecular diagnostics for AMR. In combination with publicly available web-based AMR databases, whole-genome sequencing (WGS) offers the capacity for rapid detection of AMR genes. Here we studied the concordance between WGS-based resistance prediction and phenotypic susceptibility test results for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) clinical isolates using publicly available tools and databases.

Methods: Clinical isolates prospectively collected at the University of Pittsburgh Medical Center between December 2016 and December 2017 underwent WGS. The AMR gene content was assessed from assembled genomes by BLASTn search of online databases. Concordance between the WGS-predicted resistance profile and phenotypic susceptibility as well as the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated for each antibiotic/organism combination, using the phenotypic results as gold standard.

Results: Phenotypic susceptibility testing and WGS results were available for 1242 isolate/antibiotic combinations. Overall concordance was 99.3%, with a sensitivity, specificity, PPV and NPV of 98.7% (95% CI 97.2-99.5%), 99.6% (95% CI 98.8-99.9%), 99.3% (95% CI 98.0-99.8%) and 99.2% (95% CI 98.3-99.7%), respectively. Additional identification of point mutations in housekeeping genes increased the concordance to 99.4%, sensitivity to 99.3% (95% CI 98.2-99.8%) and NPV to 99.4% (95% CI 98.4-99.8%).

Conclusion: WGS can be used as a reliable predicator of phenotypic resistance both for MRSA and VRE using readily available online tools.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6800622PMC
http://dx.doi.org/10.1016/j.jgar.2019.04.006DOI Listing

Publication Analysis

Top Keywords

phenotypic susceptibility
12
online tools
8
antimicrobial resistance
8
resistance prediction
8
whole-genome sequencing
8
methicillin-resistant staphylococcus
8
staphylococcus aureus
8
aureus mrsa
8
mrsa vancomycin-resistant
8
vancomycin-resistant enterococci
8

Similar Publications

For effective treatment of bacterial infections, it is essential to identify the species causing the infection as early as possible. Current methods typically require hours of overnight culturing of a bacterial sample and a larger quantity of cells to function effectively. This study uses one-hour phase-contrast time-lapses of single-cell bacterial growth collected from microfluidic chip traps, also known as a "mother machine".

View Article and Find Full Text PDF

Background: South Africa faces emerging resistance to TB drugs like bedaquiline. Phenotypic drug susceptibility testing (DST), the current reference standard for bedaquiline DST, has long turnaround times. Targeted next-generation sequencing (tNGS) offers a comprehensive alternative, potentially delivering faster results.

View Article and Find Full Text PDF

Aim: To investigate the phenotypic and genomic features of three multidrug-resistant (MDR) clinical mucoid and non-mucoid uropathogenic Escherichia coli (UPEC) strains to understand their antimicrobial resistance, biofilm formation, and virulence in urinary tract infections (UTIs).

Methods And Results: The UPEC strains A5, A10, and A15 were isolated from two UTI patients. Phenotypic assays included colony morphology, antibiotic susceptibility, motility, and biofilm formation.

View Article and Find Full Text PDF

Multi drug resistant Pseudomonas aeruginosa in burn infection among Iraq patients.

Cell Mol Biol (Noisy-le-grand)

September 2025

Medical Microbiology Department, College of Medicine, Ibn Sina University of Medical and Pharmaceutical Sciences, Baghdad, Iraq.

Pseudomonas aeruginosa is a prominent opportunistic pathogen, especially in burn wound infections, and is often associated with high morbidity and mortality due to its multidrug resistance (MDR) characteristics.This study aimed to evaluate the multidrug resistance profile and perform a molecular phylogenetic analysis of P. aeruginosa isolates recovered from human burn infection sample .

View Article and Find Full Text PDF

Using BONCAT to dissect the proteome of persisters.

mSphere

September 2025

Leiden Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Leiden, the Netherlands.

Bacterial persisters are a subpopulation of cells that exhibit a transient non-susceptible phenotype in the presence of bactericidal antibiotic concentrations. This phenotype can lead to the survival and regrowth of bacteria after treatment, resulting in relapse of infections. It is also a contributing factor to antibacterial resistance.

View Article and Find Full Text PDF