Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Whole-genome sequencing (WGS) studies are being widely conducted in order to identify rare variants associated with human diseases and disease-related traits. Classical single-marker association analyses for rare variants have limited power, and variant-set-based analyses are commonly used by researchers for analyzing rare variants. However, existing variant-set-based approaches need to pre-specify genetic regions for analysis; hence, they are not directly applicable to WGS data because of the large number of intergenic and intron regions that consist of a massive number of non-coding variants. The commonly used sliding-window method requires the pre-specification of fixed window sizes, which are often unknown as a priori, are difficult to specify in practice, and are subject to limitations given that the sizes of genetic-association regions are likely to vary across the genome and phenotypes. We propose a computationally efficient and dynamic scan-statistic method (Scan the Genome [SCANG]) for analyzing WGS data; this method flexibly detects the sizes and the locations of rare-variant association regions without the need to specify a prior, fixed window size. The proposed method controls for the genome-wise type I error rate and accounts for the linkage disequilibrium among genetic variants. It allows the detected sizes of rare-variant association regions to vary across the genome. Through extensive simulated studies that consider a wide variety of scenarios, we show that SCANG substantially outperforms several alternative methods for detecting rare-variant-associations while controlling for the genome-wise type I error rates. We illustrate SCANG by analyzing the WGS lipids data from the Atherosclerosis Risk in Communities (ARIC) study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507043 | PMC |
http://dx.doi.org/10.1016/j.ajhg.2019.03.002 | DOI Listing |