Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Understanding the true burden of emergent diseases is critical for assessing public-health impact. However, surveillance often relies on hospital systems that only capture a minority of cases. We use the example of Nipah-virus infection in Bangladesh, which has a high case-fatality ratio and frequent person-to-person transmission, to demonstrate how healthcare-seeking data can estimate true burden.
Methods: We fit logistic-regression models to data from a population-based, healthcare-seeking study of encephalitis cases to characterize the impact of distance and mortality on attending one of three surveillance hospital sites. The resulting estimates of detection probabilities, as a function of distance and outcome, are applied to all observed Nipah outbreaks between 2007 and 2014 to estimate the true burden.
Results: The probability of attending a surveillance hospital fell from 82% for people with fatal encephalitis living 10 km away from a surveillance hospital to 54% at 50 km away. The odds of attending a surveillance hospital are 3.2 (95% confidence interval: 1.6, 6.6) times greater for patients who eventually died (i.e. who were more severely ill) compared with those who survived. Using these probabilities, we estimated that 119 Nipah outbreaks (95% confidence interval: 103, 140)-an average of 15 outbreaks per Nipah season-occurred during 2007-14; 62 (52%) were detected.
Conclusions: Our findings suggest hospital-based surveillance missed nearly half of all Nipah outbreaks. This analytical method allowed us to estimate the underlying burden of disease, which is important for emerging diseases where healthcare access may be limited.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693802 | PMC |
http://dx.doi.org/10.1093/ije/dyz057 | DOI Listing |