A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Comparative proteomics analysis of peanut roots reveals differential mechanisms of cadmium detoxification and translocation between two cultivars differing in cadmium accumulation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Peanut is one of the most important oil and protein crops, and it exhibits wide cultivar variations in shoot Cd accumulation ability. However, the mechanism of Cd accumulation in peanut shoots has not been well understood. In this study, the root proteomics of two cultivars differing in seed Cd accumulation, Fenghua 1 (F, low Cd cultivar) and Silihong (S, high Cd cultivar), were investigated under 0 (CK) and 2 μM Cd conditions.

Results: A total of 4676 proteins were identified by proteomics screening. Of them, 375, 1762, 1276 and 771 proteins were identified to be differentially expressed proteins (DEPs) for comparison of F/F, S/S, F/S and F/S, respectively. Silihong is more sensitive to Cd exposure than Fenghua 1 in terms of root proteomics. A total of 30 and 86 DEPs were identified to be related with heavy metal transport and cell wall modification, respectively. The up-regulation of ABCB25, ABCC14, ABCC2, PDR1 and V-ATPases by Cd exposure in Silihong might enhance vacuolar sequestration of Cd and its efflux from symplast to apoplast. The higher Cd accumulation in the root CWs of Silihong might be resulted from its higher capability of CW modification, in which many proteins such as IRX10L, BGLU12-like, BGLU42, EXLB1, XTH30, XTH6, XYL7, PAL3, COMT, CAD1, and CCR1 were involved.

Conclusions: The vacuolar sequestration and efflux of Cd as well as its adsorption in CW might be the principal mechanism of cadmium detoxification in Silihong. The higher capacity of Cd accumulation and translocation of Silihong is an inherent characteristics in which ACA8 and ZIP1 might be involved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458636PMC
http://dx.doi.org/10.1186/s12870-019-1739-5DOI Listing

Publication Analysis

Top Keywords

cadmium detoxification
8
cultivars differing
8
root proteomics
8
proteins identified
8
vacuolar sequestration
8
sequestration efflux
8
silihong higher
8
accumulation
6
silihong
6
comparative proteomics
4

Similar Publications