Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cancer progression is regulated by multiple factors of extracellular matrix (ECM). Understanding how cancer cells integrate multiple signaling pathways to achieve specific behaviors remains a challenge because of the lack of appropriate models to copresent and modulate ECM properties. Here we proposed a strategy to build a thin biomaterial matrix by poly(l-lysine) and hyaluronan as an artificial stiffness-tunable ECM. Transforming growth factor-beta 1 (TGF-β1) was used as a biochemical cue to present in an immobilized and spatially controlled manner, with a high loading efficiency of 90%. Either soft matrix with immobilized TGF-β1 (i-TGF) or bare stiff matrix could only promote HCC cells to form the epithelial phenotype, whereas stiff matrix with i-TGF was the only condition to induce the mesenchymal phenotype. Further investigation revealed that i-TGF increased the specific TGF-β1 receptor (TβRI) expression to activate PI3K pathway. i-TGF-TβRI interactions also promoted HCC cell adhesion to enlarge contact area for stiffness sensing, resulting in the raising expression of the mechano-sensor (β1 integrin). Mechanotransduction would then be enhanced by the β1 integrin/vinculin/p-FAK pathway, leading to a noble PI3K activation. Using our model, a novel mechanism was discovered to elucidate regulation of cell fates by coupling mechanotransduction and biochemical signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b03572DOI Listing

Publication Analysis

Top Keywords

transforming growth
8
growth factor-beta
8
extracellular matrix
8
stiff matrix
8
matrix
6
immobilized transforming
4
factor-beta stiffness-tunable
4
stiffness-tunable artificial
4
artificial extracellular
4
matrix enhances
4

Similar Publications

Acute lung injury (ALI) is characterized by the excessive accumulation of reactive oxygen species (ROS), which triggers a severe inflammatory cascade and the destruction of the alveolar-capillary barrier, leading to respiratory failure and life-threatening outcomes. Considering the limitations and adverse effects associated with current therapeutic interventions, developing effective and safe strategies that target the complex pathophysiological mechanisms of ALI is crucial for improving patient outcomes. Herein, we developed an inhalable, multifunctional nanotherapeutic (MSCNVs@CAT) by encapsulating catalase (CAT) in mesenchymal-stem-cell-derived nanovesicles (MSCNVs).

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DCM) is a progressive heart disorder associated with diabetes mellitus, leading to structural and functional cardiac abnormalities. The mechanisms responsible include renin-angiotensin-aldosterone (RAAS) activation, inflammation, apoptosis, and metabolic disturbances. Despite well-established epidemiological links, treatments for DCM are elusive.

View Article and Find Full Text PDF

Allergic asthma is an inflammatory airway disease influenced by genetic and environmental factors and orchestrated by imbalance between T helper 1 cell (Th1) and two immune responses. Inflammation contributes to pathological changes and remodeling in tissues such as the vascular, lung, heart, and beds. The purpose for this study was to evaluate the effects of allergic asthma on heart pathology and remodeling.

View Article and Find Full Text PDF

Cardiovascular diseases are increasingly recognized as chronic disorders driven by a complex interplay between inflammation and fibrosis. In this review, we elucidate emerging mechanisms that govern the transition from acute inflammation to pathological fibrosis, with particular focus on cellular crosstalk between neutrophils, macrophages, fibroblasts, and myofibroblasts. We explore how dysregulated immune responses and extracellular matrix (ECM) remodeling sustain a pathogenic feedback loop, promoting myocardial stiffening and adverse cardiac remodeling.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction, proliferation, fibrosis, and microthrombosis of the pulmonary vasculature, which causes elevated pulmonary arterial pressure and vascular resistance leading to right ventricular failure and death. Previous treatments targeted three known pathways involved in the development of PAH: endothelin, nitric oxide, and prostacyclin. Dysfunctional signaling of the transforming growth factor-beta (TGF-β) family, via bone morphogenetic protein (BMP) receptor 2 and activin signaling, has also been implicated in PAH leading to the development of a new class of therapies.

View Article and Find Full Text PDF