A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development of a Pattern Recognition Methodology with Thermography and Implementation in an Experimental Study of a Boiler for a WHRS-ORC. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Waste heat dissipated in the exhaust system in a combustion engine represents a major source of energy to be recovered and converted into useful work. A waste heat recovery system (WHRS) based on an Organic Rankine Cycle (ORC) is a promising approach, and it gained interest in the last few years in an automotive industry interested in reducing fuel consumption and exhaust emissions. Understanding the thermodynamic response of the boiler employed in an ORC plays an important role in steam cycle performance prediction and control system design. The aim of this study is, therefore, to present a methodology to study these devices by means of pattern recognition with infrared thermography. In addition, the experimental test bench and its operating conditions are described. The methodology proposed identifies the wall coordinates, traces the paths, and tracks the wall temperature along them in a way that can be exported for subsequent post-processing and analysis. As for the results, through the wall temperature paths on both sides (exhaust gas and working fluid), it was possible to quantitatively estimate the temperature evolution along the boiler and, in particular, the beginning and end of evaporation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479838PMC
http://dx.doi.org/10.3390/s19071680DOI Listing

Publication Analysis

Top Keywords

pattern recognition
8
waste heat
8
wall temperature
8
development pattern
4
recognition methodology
4
methodology thermography
4
thermography implementation
4
implementation experimental
4
experimental study
4
study boiler
4

Similar Publications