Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A flame retardant rigid polyurethane foam (RPUF) system containing functionalized graphene oxide (fGO), expandable graphite (EG), and dimethyl methyl phosphonate (DMMP) was prepared and investigated. The results show that the limiting oxygen index (LOI) of the flame-retardant-polyurethane-fGO (FRPU/fGO) composites reached 28.1% and UL-94 V-0 rating by adding only 0.25 g fGO. The thermal degradation of FRPU samples was studied using thermogravimetric analysis (TG) and the Fourier transform infrared (FT-IR) analysis. The activation energies () for the main stage of thermal degradation were obtained using the Kissinger equation. It was found that the fGO can considerably increase the thermal stability and decrease the flammability of RPUF. Additionally, the of FRPU/fGO reached 191 kJ·mol, which was 61 kJ·mol higher than that of the pure RPUF (130 kJ·mol). Moreover, scanning electron microscopy (SEM) results showed that fGO strengthened the compactness and the strength of the "vermicular" intumescent char layer improved the insulation capability of the char layer to gas and heat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402230 | PMC |
http://dx.doi.org/10.3390/polym11010078 | DOI Listing |