Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Water is generally considered to be a safe and green solvent suitable for use in natural product extraction. In this study, an eco-friendly subcritical water method was used to extract pectin from waste jackfruit peel (JFP-S), which was compared with pectin obtained by the traditional citric acid method (JFP-C).
Results: The extraction process was optimized using response surface methodology (RSM), and the optimum process parameters were as follows: extraction temperature 138 °C, extraction time 9.15 min, liquid / solid (L/S) ratio 17.03 mL g . Under these conditions, the pectin yield was 149.6 g kg (dry basis). Pectin obtained from the two extraction methods displayed a high degree of esterification and the monosaccharide composition was consistent. The galacturonic acid content of JFP-S and JFP-C was 52.27% and 56.99%, respectively. JFP-S had more hairy regions and side chains than JFP-C. The molecular weight of JFP-S was 113.3 kDa, which was significantly lower than that of JFP-C (174.3 kDa). Fourier-transform infrared spectroscopy (FTIR) indicated that two samples had similar pectin typical absorption peaks. According to differential scanning calorimetry (DSC), both JFP-S and JFP-C had relatively good thermal stability. JFP-S demonstrated lower apparent viscosity and elasticity than JFP-C. Meanwhile, the G' and G'' moduli of JFP-S were lower, which found expression in the gel textural characterization of the samples.
Conclusion: This work showed that the subcritical water method is an efficient, time-saving, and eco-friendly technology for the extraction of pectin from jackfruit peel compared with the traditional citric acid method. The physicochemical properties of pectin could be changed during subcritical water extraction. © 2019 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.9729 | DOI Listing |