Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although pathological observations provide approximate prognoses, it is difficult to achieve prognosis in patients with existing prognostic factors. Therefore, it is very important to find appropriate biomarkers to achieve accurate cancer prognosis. Renal cell carcinoma (RCC) has several subtypes, the discrimination of which is crucial for proper treatment. Here, we present a novel biomarker, VNN3, which is used to prognose clear cell renal cell carcinoma (ccRCC), the most common and aggressive subtype of kidney cancer. Patient information analyzed in our study was extracted from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) cohorts. VNN3 expression was considerably higher in stages III and IV than in stages I and II. Moreover, Kaplan-Meier curves associated high VNN3 expression with poor prognoses (TCGA,  < .0001; ICGC,  = .00076), confirming that ccRCC prognosis can be predicted via VNN3 expression patterns. Consistent with all patient results, the prognosis of patients with higher VNN3 expression was worse in both low stage (I and II) and high stage (III and IV) (TCGA, < 0.0001 in stage I and II; ICGC, = 0.028 in stage I and II; TCGA, = 0.005 in stage III and IV). Area under the curve and receiver operating characteristic curves supported our results that highlighted VNN3 expression as a suitable ccRCC biomarker. Multivariate analysis also verified the prognostic performance of VNN3 expression (TCGA,  < .001; ICGC,  = .017). Altogether, we suggest that VNN3 is applicable as a new biomarker to establish prognosis in patients with ccRCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440501PMC
http://dx.doi.org/10.1080/19768354.2019.1583126DOI Listing

Publication Analysis

Top Keywords

renal cell
12
cell carcinoma
12
novel biomarker
8
clear cell
8
cell renal
8
cancer genome
8
vnn3 expression
8
cell
5
vnn3
4
vnn3 potential
4

Similar Publications

Background: Local control strategies in pediatric oncology are guided by disease-specific considerations. Effective communication of the goals of surgical procedure and associated intraoperative events plays a crucial role in shaping subsequent treatment decisions. However, accurately and comprehensively documenting these findings remains challenging, with considerable variability across different tumor types.

View Article and Find Full Text PDF

The progression of renal fibrosis is difficult to reverse, and Poria cocos, one of the main components of Wenyang Zhenshuai Granules, has been shown to be crucial to the development of the epithelial-mesenchymal transition (EMT). This study aimed to examine the molecular mechanism by which Poricoic Acid A (PAA) inhibited the advancement of EMT in renal tubular epithelial (RTE) cells. The protein levels of sprouty RTK signaling antagonist 2 (SPRY2) extracellular regulated protein kinases (ERK), and p-ERK were measured.

View Article and Find Full Text PDF

Background: Inflammation and hyperuricemia are closely associated with chronic kidney disease (CKD). The systemic inflammation response index (SIRI), systemic immune-inflammation index (SII), monocyte-to-lymphocyte ratio (MLR), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) are emerging as novel biomarkers. While, the synergistic effects of these biomarkers with hyperuricemia on CKD remain unclear.

View Article and Find Full Text PDF

Enterohemorrhagic (EHEC), a pathotype within the Shiga toxin-producing (STEC) group, is a major etiological agent of severe gastrointestinal illness and life-threatening sequelae, including hemolytic uremic syndrome. Although insights into EHEC pathogenesis have been gained through traditional 2D cell culture systems and animal models, these platforms are limited in their ability to recapitulate human-specific physiological responses and tissue-level interactions. Recent progress in three-dimensional (3D) cell culture systems, such as spheroids, organoids, and organ-on-a-chip (OoC) technologies, has enabled more physiologically relevant models for investigating host-pathogen dynamics.

View Article and Find Full Text PDF

Shiga toxin (Stx) is a virulence factor produced by serotype 1 and Stx-producing (STEC). It causes severe renal damage, leading to hemolytic uremic syndrome (HUS). The main target organ of Stx, the kidney, plays a role in maintaining water homeostasis in the body by increasing an osmotic gradient from the cortex to the medulla.

View Article and Find Full Text PDF