Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this study, a commercial and fully flexible monofilament mesh has been used for the deposition of a thermosensitive hydrogel, generated by graft copolymerization of N-isopropylacrylamide (NIPAAm) and N,N'-methylene bis(acrylamide) (MBA) monomers. The mechanism of adhesion and graft copolymerization have been elucidated combining micro- and standard spectroscopy techniques such as Raman spectroscopy, FTIR spectroscopy and XPS, before and after the activation of the polypropylene (PP) fibre surface by using oxygen-plasma. The good covalent interactions among NIPAAm monomers and PP fibres, and the hydrogel chain growth in such flexible bidimensional structures, were demonstrated. Additionally, the thermoresponsive properties of PNIPAAm were obtained (VPTT behaviour). The bilayer system is stable below and above a low critical solution temperature (LCST) of 33.2 °C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9sm00412b | DOI Listing |