Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Exposures to environmental stressors that derive from pollution (e.g. air, light) or lifestyle choices (e.g. diet, activity, 24-hour-×-7-day) are associated with adverse human health outcomes. For instance, there is evidence that air pollution exposure and changes in sleep/wake pattern increase the risk for vascular and cardiometabolic disorders. Interestingly, air pollution exposure affects pulmonary and cardiovascular functions that follow circadian rhythmicity and increases the risk for pulmonary and cardiovascular events that occur in diurnal patterns suggesting a link between air pollution induced cardiovascular and pulmonary injury and changes in circadian rhythm. Indeed, recent research identified circadian rhythm as an air pollution target and circadian rhythm as factor that increases air pollution sensitivity. Using air pollution exposure as precedent, this review highlights research on how environmental pollution affect circadian rhythm and how circadian rhythm affects the toxicity of environmental stressors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438195 | PMC |
http://dx.doi.org/10.1016/j.cophys.2018.05.002 | DOI Listing |