A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Perovskite solar cells typically comprise electron- and hole-transport materials deposited on each side of a perovskite active layer. So far, only two organic hole-transport materials have led to state-of-the-art performance in these solar cells: poly(triarylamine) (PTAA) and 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD). However, these materials have several drawbacks in terms of commercialization, including high cost, the need for hygroscopic dopants that trigger degradation of the perovskite layer and limitations in their deposition processes. Poly(3-hexylthiophene) (P3HT) is an alternative hole-transport material with excellent optoelectronic properties, low cost and ease of fabrication, but so far the efficiencies of perovskite solar cells using P3HT have reached only around 16 per cent. Here we propose a device architecture for highly efficient perovskite solar cells that use P3HT as a hole-transport material without any dopants. A thin layer of wide-bandgap halide perovskite is formed on top of the narrow-bandgap light-absorbing layer by an in situ reaction of n-hexyl trimethyl ammonium bromide on the perovskite surface. Our device has a certified power conversion efficiency of 22.7 per cent with hysteresis of ±0.51 per cent; exhibits good stability at 85 per cent relative humidity without encapsulation; and upon encapsulation demonstrates long-term operational stability for 1,370 hours under 1-Sun illumination at room temperature, maintaining 95 per cent of the initial efficiency. We extend our platform to large-area modules (24.97 square centimetres)-which are fabricated using a scalable bar-coating method for the deposition of P3HT-and achieve a power conversion efficiency of 16.0 per cent. Realizing the potential of P3HT as a hole-transport material by using a wide-bandgap halide could be a valuable direction for perovskite solar-cell research.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-019-1036-3DOI Listing

Publication Analysis

Top Keywords

solar cells
20
perovskite solar
16
hole-transport material
12
perovskite
9
hole-transport materials
8
cells p3ht
8
p3ht hole-transport
8
wide-bandgap halide
8
power conversion
8
conversion efficiency
8

Similar Publications