A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Citrus Flavanones Enhance β-Carotene Uptake in Vitro Experiment Using Caco-2 Cell: Structure-Activity Relationship and Molecular Mechanisms. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Flavonoids can interfere with the absorption of carotenoids. In this study, the inherent mechanisms of 12 citrus flavanones for β-carotene (Bc) cellular uptake and the structure-activity relationship were investigated. The results showed that multiple hydroxyl groups had the lowest promoting effect. O-Glycosylation at C7 of the A ring led to the greatest promoting effect on Bc absorption. O-Glycosylation at C7 exhibited a strong affinity with the cell membrane and subsequently fluidized the cell membrane. Aglycon molecules significantly induced transient increases of paracellular permeability by decreasing tight junction proteins (ZO-1, claudin-1) expression. In addition, citrus flavanones might enhance scavenger receptor class B type I (SR-BI) expression via their actions as agonists of peroxisome proliferator-activated receptor-gamma (PPARγ). Catechol structure in the B-ring attenuated the activate action of SR-BI expression. The structure-dependent membrane permeability and activation of specific membrane proteins are mechanistically associated with the promoting effect on Bc cellular uptake by citrus flavanones.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.9b01376DOI Listing

Publication Analysis

Top Keywords

citrus flavanones
16
flavanones enhance
8
structure-activity relationship
8
cellular uptake
8
cell membrane
8
sr-bi expression
8
citrus
4
enhance β-carotene
4
β-carotene uptake
4
uptake vitro
4

Similar Publications