A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat classification. | LitMetric

A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat classification.

Comput Methods Programs Biomed

School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China. Electronic address:

Published: April 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Objective: Electrocardiogram (ECG) is a useful tool for detecting heart disease. Automated ECG diagnosis allows for heart monitoring on small devices, especially on wearable devices. In order to recognize arrhythmias automatically, accurate classification method for electrocardiogram (ECG) heartbeats was studied in this paper.

Methods: Based on weighted extreme gradient boosting (XGBoost), a hierarchical classification method is proposed. A large number of features from 6 categories are extracted from the preprocessed heartbeats. Then recursive feature elimination is used for selecting features. Afterwards, a hierarchical classifier is constructed in classification stage. The hierarchical classifier is composed of threshold and XGBoost classifiers. And the XGBoost classifiers are improved with weights.

Results: The method was applied to an inter-patient experiment conforming AAMI standard. The obtained sensitivities for normal (N), supraventricular (S), ventricular (V), fusion (F), and Unknown beats (Q) were 92.1%, 91.7%, 95.1%, and 61.6%. Positive predictive values of 99.5%, 46.2%, 88.1%, and 15.2% were also provided for the four classes.

Conclusions: XGBoost was improved and firstly introduced in single heartbeat classification. A comparison showed the effectiveness of the novel method. The method was more suitable for clinical application as both high positive predictive value for N class and high sensitivities for abnormal classes were provided.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2019.02.005DOI Listing

Publication Analysis

Top Keywords

based weighted
8
weighted extreme
8
extreme gradient
8
gradient boosting
8
heartbeat classification
8
electrocardiogram ecg
8
classification method
8
hierarchical classifier
8
xgboost classifiers
8
positive predictive
8

Similar Publications