Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The purpose of this study is to develop a solid dispersion system with improved dissolution, absorption, and patient compliance of poorly water-soluble celecoxib (CXB). Instead of sodium lauryl sulfate (SLS), an anionic surfactant used in the marketed product (Celebrex), solubilization was performed using non-ionic surfactants with low toxicity. Cremophor RH40 (Cre-RH) was selected as the optimal solubilizer. Granules and tablets containing CXB and Cre-RH were prepared via fluid-bed and tableting processes, respectively. The morphology, crystallinity, flowability, dissolution, and pharmacokinetics for CXB-solid dispersion granules (SDGs) and the hardness and friability for CXB-solid dispersion tablets (SDTs) were evaluated. The solubility of CXB was found to be increased by about 717-fold when using Cre-RH. The dissolution of granules containing Cre-RH was found to be increased greatly compared with CXB API and Celebrex (66.9% versus 2.3% and 37.2% at 120 min). The improvement of the dissolution was confirmed to be the same as that of granules in tablets. The CXB formulation resulted in 4.6- and 4.9-fold higher AUC and of CXB compared with those of an oral dose of CXB powder in rats. In short, these data suggest that the solid dispersion based on Cre-RH-a non-toxic solubilizer, non-ionic surfactant- may be an effective formulation for CXB to enhance its oral bioavailability and safety.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471285PMC
http://dx.doi.org/10.3390/pharmaceutics11030136DOI Listing

Publication Analysis

Top Keywords

water-soluble celecoxib
8
solid dispersion
8
cxb
8
granules tablets
8
tablets cxb
8
cxb-solid dispersion
8
development evaluation
4
evaluation water-soluble
4
celecoxib solid
4
solid dispersions
4

Similar Publications

Lipid-based formulations (LBFs) are enabling formulations for poorly water-soluble, mostly lipophilic drugs. In LBFs, the drug is pre-dissolved in the formulation which can consist of lipids, surfactants, and/or cosolvents. In cases where the administration of high amounts of a drug is required, exceeding the drug solubility in the lipidic vehicle at the administration temperature, supersaturated LBFs are an option.

View Article and Find Full Text PDF

Coamorphous drug delivery systems have emerged as a promising formulation strategy to enhance the solubility, oral bioavailability, and physical stability of poorly water-soluble drugs. The molar ratio of components in coamorphous systems plays a critical role in determining their physical stability. In this study, we investigated the crystallization behavior of coamorphous celecoxib-carbamazepine (CEL-CBZ) systems at different molar ratios.

View Article and Find Full Text PDF

Copper-KRAS-COX2 Axis: A Therapeutic Vulnerability in Pancreatic Cancer.

J Med Chem

April 2025

Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States.

KRAS mutations are a hallmark of pancreatic ductal adenocarcinoma (PDAC), occurring in over 90% of tumors. Tumors with these mutations are highly dependent on copper, making the targeting of copper homeostasis an attractive strategy for treating PDAC due to the higher copper requirement of cancer cells compared to normal cells. Herein, we present the discovery, lead optimization, and structure-activity relationship study of a series of novel quinolyl pyrazinamides for the treatment PDAC.

View Article and Find Full Text PDF

Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.

View Article and Find Full Text PDF

Drug-Phospholipid Co-Amorphous Formulations: The Role of Preparation Methods and Phospholipid Selection.

Pharmaceutics

December 2024

Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.

: This study aims to broaden the knowledge on co-amorphous phospholipid systems (CAPSs) by exploring the formation of CAPSs with a broader range of poorly water-soluble drugs, celecoxib (CCX), furosemide (FUR), nilotinib (NIL), and ritonavir (RIT), combined with amphiphilic phospholipids (PLs), including soybean phosphatidylcholine (SPC), hydrogenated phosphatidylcholine (HPC), and mono-acyl phosphatidylcholine (MAPC). : The CAPSs were initially prepared at equimolar drug-to-phospholipid (PL) ratios by mechano-chemical activation-based, melt-based, and solvent-based preparation methods, i.e.

View Article and Find Full Text PDF